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摘要 

随着智能驾驶技术的不断发展，具有辅助驾驶系统的车辆已经逐渐开始了商业

化进程；自动变道辅助驾驶技术（ALC）也从需要驾驶员拨动转向灯拨杆传递变道

信号逐渐向取消驾驶员变道指令传入的主动变道发展。针对高速主动变道决策规划

算法中，存在换道意图参数多和非线性强、在设计决策算法时需要考虑与他车的交

互博弈、未在规划层合理的考虑车辆运动学特性和最优性等问题；本文提出的一种

基于数据驱动、主从博弈和微分平坦的高速换道决策规划一体化框架，旨在提升高

速主动变道辅助驾驶性能，减轻驾驶员的驾驶负担，具体研究内容如下： 

第一，设计了一种基于数据驱动的主动换道意图产生方法，利用小波阈值算法

对 NGSIM 数据集进行去噪，然后选取驾驶风格为普通型的意图表征时窗，将产生换

道意图时的数据特征输入到深度置信网络（DBN）中进行训练，并利用遗传算法优

化深度置信网络的超参数如微调次数、动量和学习率等，结果表明深度置信网络模

型在测试集上的分类准确率达到了 82.3%，可对换道意图是否产生做出准确性判断。 

第二，设计了一种基于主从博弈的换道决策方法，当主车产生换道意图后会打

开转向灯，此时需要根据博弈交互条件判断主车和目标车道后车是否存在博弈行为，

若存在则需要根据目标车道后车的驾驶风格预先规划主车轨迹，然后根据主车轨迹

计算主车和目标车道后车的速度、安全和舒适性收益，将其求和得到博弈收益矩阵；

最后利用逆向归纳法对主车和目标车道后车之间的博弈进行推演，得到最优决策。 

第三，提出一种基于凸二次规划和粒子群进化优化的分层轨迹规划算法。利用

贝塞尔曲线的凸包性，设计安全走廊约束，以轨迹平滑性为目标函数构建一个底层

规划器（凸二次规划器）。基于底层规划器求解得到的横纵向贝塞尔曲线和车辆运动

学模型的微分平坦输出进行三维耦合，构建满足车辆乘坐舒适性、高效性和安全性

的目标函数，利用 PSO 算法优化底层规划器的先决条件，最终搜索到一条综合性能

最优的换道避障轨迹。通过与基于采样的五次多项式算法进行对比可知，所提出的

算法得到的轨迹综合性能更优。 

最后，搭建了 Carsim 和 Simulink 联合仿真平台对所提的决策规划算法进行验证，

设计了三种不同工况下的仿真场景，结果表明当主车产生换道意图打开转向灯后，

主车能根据博弈对象的反应做出自身收益最大的策略，具有很高的拟人性，且规划
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得到的轨迹具有很高的安全性、舒适性和可控性。 

关键词：主动换道；深度置信网络（DBN）；Stackelberg 博弈；微分平坦；轨迹

规划 
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Abstract 

With the continuous development of intelligent driving technology, vehicles with 

assisted driving systems have gradually begun the commercialization process; Auto lane 

change(ALC)  assistant driving technology has also gradually developed from requiring the 

driver to move the turn signal paddle to transmit lane change signals to canceling the driver's 

lane change instructions. In the high-speed active lane change decision planning algorithm, 

there are many problems such as multi lane change intention parameters and large 

nonlinearity, the need to consider the interactive game with other vehicles when designing 

the decision algorithm, and the failure to reasonably consider the vehicle kinematics 

characteristics and optimality at the planning module; This article proposes an integrated 

framework for high-speed lane change decision planning based on data-driven, stackelberg 

game and differential flattening, aiming to improve the driving performance of high-speed 

active lane change assistance and reduce the driving burden of drivers. The specific research 

content is as follows: 

First, a data-driven method for generating active lane-changing intentions is designed. 

The wavelet threshold algorithm is used to denoise the NGSIM data set, and then the driving 

style is selected as the common intention representation time window. Input the data features 

when the lane change intention is generated into the deep belief network (DBN) for training, 

and the hyperparameters of the Deep Belief Network, such as the number of fine-tuning, 

momentum and learning rate are optimized using the genetic algorithm. The results show that 

the classification accuracy of the Deep Belief Network model on the test set reaches 82.3%, 

and it can make an accurate judgment on whether the intention to change lanes occurs. 

Second, a lane-changing decision-making method based on stackelberg game is 

designed. When the master car generates a lane-changing intention, it will turn on the turn 

signal. At this time, it is necessary to judge whether there is a game behavior between the 

master car and the car behind the target lane according to the game interaction conditions. If 

it exists, it is necessary to pre-plan the trajectory of the main vehicle according to the driving 

style of the vehicle behind the target lane, then calculate the speed, safety and comfort 

benefits of the main vehicle and the vehicle behind the target lane according to the trajectory 

of the main vehicle, and sum them to obtain the game profit matrix; finally use the reverse 

induction method deduces the game between the main vehicle and the vehicle behind the 

target lane, and obtains the optimal decision. 



北京理工大学硕士学位论文 

IV 

 

Thirdly, a hierarchical trajectory planning algorithm based on convex Quadratic 

programming and particle swarm optimization is proposed. Using the convexity of Bézier 

curve, the safety corridor constraint is designed, and a bottom planner (convex Quadratic 

programming) is constructed with trajectory smoothness as the objective function. Based on 

the horizontal and longitudinal Bézier curve obtained from the bottom planner and the 

differential flat output of the vehicle kinematics model, a three-dimensional coupling is 

carried out to build an objective function that meets the requirements of vehicle riding 

comfort, efficiency and safety. The preconditions of the bottom planner are optimized using 

the PSO algorithm, and finally a lane change and obstacle avoidance trajectory with optimal 

comprehensive performance is found. By comparing with the sampling based quintic 

polynomial algorithm, it can be seen that the proposed algorithm achieves better trajectory 

synthesis performance. 

Finally, a joint simulation platform of Carsim and Simulink was built to verify the 

proposed decision planning algorithm, and three simulation scenarios under different 

working conditions were designed. The results show that when the main vehicle has the 

intention to change lanes and turn on the turn signal, the main vehicle can make the strategy 

with the maximum benefit according to the reaction of the game object, which is highly 

human like, and the planned trajectory has high safety, comfort and controllability. 

Key Words: Active lane change; Deep belief network; Stackelberg game; Differential 

flatness; Trajectory planning 
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第 1 章  绪论 

1.1 研究背景与意义 

进入 21 世纪，随着全球汽车产业的快速发展，汽车电子技术的广泛应用，网络

互联的基本覆盖，汽车产业的发展不再是单一产业的运作。它结合了电子技术、互

联网技术、计算机技术等，形成了多元化、网络化、智能化的发展。智能汽车作为

21 世纪汽车产业发展的重要标志，是全球汽车和交通运输领域智能化、网络化发展

的最终方向，也是学术界和资本追逐的热点。因为它将对降低交通事故发生率、减

少交通拥堵、改善大气环境、降低能耗等做出重要贡献[1] 。 

美国汽车工程学会（SAE）根据汽车的智能程度划分了六个自动驾驶汽车的级

别，如图 1.1 智能汽车等级分类所示。中国政府在 2015 年发布的《中国制造 2025》

文件中明确提出：智能网联汽车将成为汽车领域产业布局和战略投资的风口，引领

和推动中国汽车产业新时代的降临，并且在 2025 年实现 L4,L5 级别的智能驾驶，逐

步实现智能驾驶技术标准化[2]。 

 

图 1.1 智能汽车等级分类 

目前，国内的智能车辆的智能化程度仍处于美国汽车工程师协会定义的 L2 级别，

即以驾驶辅助系统(ADAS)为基础，自动泊车辅助系统(APA)、道路标识识别（TSR）、

拥堵自动辅助驾驶（Traffic Jam Pilot）、车道保持功能（LKA）、高速自动辅助驾驶

（Highway Pilot）、前侧来车预警(CTA-F)等，实现多功能组合的高级辅助驾驶[3]。同
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时为了快速抢占高级辅助驾驶市场，特斯拉、蔚来、小鹏等都陆续推出了高阶的 L2

级辅助驾驶功能 NOA、NOP、NGP，可以说在特定路段实现了 L3的功能，但需要驾

驶员实时监控；当驾驶员开启高级辅助驾驶时，车辆此时具备主动转向、主动换道、

自主超车、自主上下匝道等，基本实现在城市工况下的“无人驾驶”需求。 

自动变道（Auto Lane Change）辅助驾驶技术最早是由特斯拉提出，驾驶员只需

要拨动左转向灯或右转向灯拨杆，自动变道辅助系统将对环境进行判断，然后辅助

驾驶员将车辆驶入相邻车道。目前除特斯拉、蔚来和小鹏外的其它厂商也逐渐支持

了这项功能，但目前市场的反馈较差，主要原因是需要驾驶员拨动拨杆导致消费者

对此功能的接受程度降低。目前小鹏、华为问界等最新的车型中都逐渐取消了需要

驾驶员拨杆，只需要驾驶员提前在操作面板上同意车辆开启主动换道辅助驾驶功能，

车辆就能在无需驾驶员输入换道信号的情况下主动换道。 

智能车辆自动驾驶技术的普及将对提高交通安全性、改善出行质量及效率、扩

大车辆受用人群等具有积极的影响。但随着我国机动车保有量持续增高，导致我国

交通事故数量持续走高，如下图 1.2中国交通事故图可知，截至到 2020，我国每年发

生的交通事故数已接近 25 万次每年，同时仍有增长趋势，而交通事故导致的死亡人

数也到达了近 6 万人，而在 2018 年竟高达近 7 万人，无可否认，交通安全是威胁人

类生命安全和阻碍国家经济发展的的重要因素。 

 

图 1.2 中国交通事故图 
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 据美国交通局统计可知由驾驶员导致车辆发生交通事故的概率占总事故的 94%，

由于车辆保有量的持续增加，人类驾驶环境日趋复杂，如果驾驶员想要安全稳定地

驾驶，他需要拥有丰富的驾驶经验，在辅助多变的交通场景中去观测、推断、估计

他车的行为然后做出决策，疲劳驾驶或者技术员注意力不集中粗心驾驶导致的交通

事故率高达 48%[4]；此外，有些技术员因缺乏驾驶经验，在拥挤路段做出速度过快、

转方向盘过急等不良决策导致的交通事故率高达 44%，而环境等不可控的因数导致

的交通事故率仅仅占 2%，而高级辅助驾驶功能开发的宗旨就是帮助人类驾驶员更高

效更安全的驾驶汽车，它是通过摄像头激光雷达等硬件设备收集外界信息后，根据

决策规划控制系统对车辆进行控制，故其具有更好的稳定性，不会出现驾驶经验不

足。 

根据美国交通局统计可知由于车辆换道行为导致的交通事故率为 27%[5]，相比于

其它驾驶行为，车辆换道是一个极其复杂的行为，因为其要考虑交通规则、自车与

本车道前车的关系、自车与左右车道后车和前车的关系、安全行驶空间的判断等等，

这些都需要有良好的感官能力和老道的驾驶经验，如 Z Zheng[6]等人对从 2004到 2007

搜集到的 80000个数据进行分析发现驾驶员在换道时心理压力会增大，因为在与他车

交互时容易紧张而导致操作失误而引发交通事故的概率大大提高；此外非正当换道

也会导致道路通行率降低，发生交通拥堵；故开发一个高效、舒适、安全的换道辅

助驾驶功能显的极为迫切，其不仅可以大大降低交通事故率，还可以缓解交通拥堵，

提升驾驶员的交通出行幸福感。 

综上所示，开发具有完备功能的辅助换道系统是智能车实用化的关键一环，辅

助驾驶系统主要由感知、决策规划、控制三大系统构成，本文主要以车辆自由换道

行为为研究对象，以数据驱动的方式去学习经验丰富的驾驶员换道意图产生的方式，

然后建立主车与目标车道后车的 Stackelberg 博弈模型，旨在考虑车辆换道过程中的

博弈行为后做出决策，最后设计了考虑车辆运动学特性的分层轨迹规划算法，其在

受到决策指令后，能规划出一条高效、舒适、安全的换道轨迹。 

1.2 国内外研究现状 

智能车主动换道过程主要包括换道意图产生、换道决策、轨迹规划和轨迹跟踪

控制四个部分。本文将传统的换道行为决策分解为基于数据驱动的换道意图产生和

换道决策两个部分，前者从驾驶员驾驶经验的数据中学习换道意图产生的机理，给
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出是否产生换道意图，若产生换道意图，则需要建立主车与目标车道后车的博弈模

型，在预测目标车道后车的反应后做出最终换道的决策，当轨迹规划模块收到决策

模块发送的换道指令后，会规划出一条无碰撞的、高效的、舒适的行驶轨迹，轨迹

跟踪模块会根据轨迹规划模块传递的路径曲线和速度曲线控制油门和方向盘使车辆

按照规划的轨迹行驶，从而完成主动换道过程。本文主要研究的是智能车换道意图

产生、换道决策和轨迹规划，下面就对这三部分的研究现状进行介绍。 

1.2.1 换道意图产生研究现状 

在驾驶意图产生机理领域国外学者的研究要比国内稍早一些，早于 2000 年日本

日产公司 Kuge N 等人[7]收集车辆行驶过程中方向盘转角的幅值和速率，然后将其作

为隐马尔可夫模型（HMM）的观测序列来搭建识别模型，并通过实验证明该模型能

在驾驶员换道操作进行 0.5s-0.7s 这个时间段辨识出技术员的意图，论文中将意图分

为车道保持、正常换道和紧急换道三种，其模型的准确率能够高达 85%。 

美国学者 Sathyanarayana A[8]使用隐马尔可夫模型（HMM）以两种不同的互补方

法对驾驶员行为信号进行建模。第一种方法使用不同类型车辆驾驶员驾驶过程中产

生的 CAN 数据进行训练（bottom-to-top）,第二种算法是在第一种算法获得的隐马尔

可夫模型后基于 Viterbi 算法求解驾驶员操作意图进行识别，该框架对两种算法进行

了互补，将驾驶员的驾驶行为进行了更系统的量化。 

麻省理工学院 Aoude G S[9]等人基于支持向量机和贝叶斯滤波（SVM-BF）对驾

驶员的意图进行双重分析；首先通过采集驾驶员驾驶车辆的车速、方向盘转角、和

周围车辆的车速等参数将其输入到 SVM-BF 中，然后设立安全阈值进行意图输出辨

识，通过实验得出该方法能够对处于交叉路口的驾驶员下一步的驾驶意图进行准确

的估计，具有很高的成功率，这种方法也被称为设定安全阈值避让算法。 

日本学者 Ohashi L[10]等人提出一种模糊联想记忆系统（Fuzzy associative 

memory），通过对案例学习的方法识别驾驶员的左转、直行和右转三种意图。该系统

主要有三层：进入层、中间层和输出层；接入层为底层主要是根据模糊标签参数进

行输入，输入量主要有自车车速、与车前的纵向距离等参数；中间层主要是完成对

输入量单位转换的操作；输出层为上层主要是将模型的结果进行分类然后输出对驾

驶员意图的预测结果。 

有部分学者从微观交通流的领域研究驾驶意图产生的机理，如美国卡耐基梅隆
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大学 Wei J 等人提出了一种基于预测和成本函数的换道模型（Prediction- and cost 

function-based algorithm,PCB）[11], 借助人类可理解且具有代表性的成本函数库，对预

测的交通场景进行评估，并基于最低成本车道选择是否产生换道意图，如下图 1.3 

boss 无人车所示，该算法在 2007 的世界无人驾驶技术城市挑战赛（DARPA）boss 乘

用车上得到了验证，帮助其取得了良好的比赛结果。 

 

图 1.3 boss 无人车 

达姆施塔特工业大学 Habenicht S[12]等人认为驾驶员产生换道意图是为了寻求更

高的驾驶效率，作者将驾驶意图分为换道、直行、加速和减速这四种，设计了一种

基于激励因数、抑制程度和指标检测这三种因数的换道赋值系统来提高行驶效率，

此系统可以根据不同路况输出进行决策。国内学者近些年对驾驶意图识别、产生机

理的研究也取得了丰富的成果。肖献强等人[13]认为驾驶行为受到驾驶意图的驱使，

驾驶员先产生驾驶意图后才会产生驾驶行为，两种之间存在一定的时间差；作者将

驾驶员多种驾驶行为对应的特征数据作为马尔可夫模型（HMM）的观测序列来搭建

模型，实现了对车道偏离、车辆紧急转向和车辆一般转向三类驾驶意图的预测。王

玉海[14]等人根据车辆运动学特性提出了一种驾驶员意图和驾驶环境统一识别的方法，

首先，定义车辆匀速行驶时的平衡节流阀开度和相对节流阀开度，然后通过实车实

验收集数据。在建立的模糊推理规则库的基础上，建立了驾驶员驾驶意图识别的模

糊推理模型。孙纯[15]等人通过对驾驶员在车道保持和换道过程中的录像进行分析得

出驾驶员产生不同驾驶意图时视觉参数具有明显差异，具体表现在驾驶员注视和扫

视的差异。作者将驾驶员注视的区域划分为 7部分，在进行统计分析后提取出表征驾
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驶员换道意图的视觉指标，然后通过 Logistic 回归模型对换道意图进行识别，该研究

主要是基于驾驶员的视觉特性预测驾驶员的意图。 

综上可知，尽管国内外对换道驾驶意图产生的内置机理研究较早，但大多都是

基于或者包含了驾驶员的视觉特性、驾驶员操作方向盘的转角数据等，这些数据在

高级辅助驾驶系统中是无法产生的，高级辅助驾驶是一种倾向于逐渐解放驾驶员操

作的辅助驾驶系统，所以此时并不会有驾驶员转动方向盘的数据；而基于微观交通

流建立函数去判断驾驶员是否产生换道意图在一定程度上符合高级辅助驾驶的主动

换道功能需求，但由于驾驶员换道意图受到较多因数的影响，各个因素的权重也较

难确定，故此方法的工程难度较大，且难以做到类人化；基于以上需求和现有方法

的缺陷，本文提出了一种通过对交通流数据进行学习的算法，通过基于遗传算法优

化的深度置信网络模型（GA-DBN）去判断是否产生换道意图。 

1.2.2 换道决策研究现状 

在产生换道意图后，智能车决策系统需要利用摄像头、激光雷达等设备对周围

环境进行观察后对换道的安全性进行分析，同时还要考虑到目标车道后车与自己的

交互后做出是否换道的最终决策。目前，学术界和工业界自动驾驶汽车采用的换道

决策方法主要分为三类：基于规则的、基于数据驱动的和基于博弈的，下面将对这

三种方法进行论述。 

基于规则的换道决策模型最早源于美国学者 Gipps[16]提出的 Gipps 换道决策模型，

在他看来，是否换道主要取决于障碍物的位置、车辆是否碰撞、是否存在专用车道、

前方是否有重型车辆、目标车道相对于当前车道的速度优势以及驾驶员的转弯初衷，

Gipps 模型考虑到了诸多环境因素如障碍物的位置、最小安全距离、车辆种类等等，

但因为其计算量大、计算无效等缺点逐渐被工业界所淘汰；麻省理工大学的 Yang 

Qi[17]博士在 Gipps 模型的基础上提出了 MITSIM（Microscopic Traffic Simulator,微观

交通仿真器）模型，同时也是他首次提出了自由换道和强制换道的概念，其通过速

度差因子和容忍系数来进行换道决策，并通过比较各个车道允许的最大车速来选出

目标车道，MITSIM 模型虽然在 Gipps 模型的基础上进行了改进，把随机误差加入到

了最小间距中，但其没有考虑到车辆间的博弈导致的减速和加速行为；CORSIM 模

型是由美国联邦公路署（FHWA）开发的[18]，它由三个因素组成:利益、动机和紧迫

性，动机是由驾驶员无法承受的速度限制决定的，当当前车速低于限速时，驾驶员
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就会产生换道的动机，效益是指驾驶员在换道后所获得的效益，紧迫性代表驾驶员

自己主观换道意愿的强度，CORSIM 模型应用范围比较广泛，但模型参数较多，需

要大量的测试数据进行标定；SITRAS 模型[19]是由 Ratrout 开发的一个大型多智能体

仿真系统，该模型主要通过主车跟驰本车道前车的情况下其减速度是否大于其可接

受的程度和在主车换道到目标车道后目标车道后车的减速度是否大于其可接收的程

度这两个条件来判断是否进行换道，同时公式中利用驾驶员的风险因子系数去反应

驾驶风格。目前工业界在微观交通流仿真领域广泛运用 Gipps、MITSIM、CORSIM

和 SITRAS，其中后两者运用更为广泛，无人驾驶常见的仿真器 Carla、LGSVL 也采

用到这些模型。 

 

图 1.4 有限状态机 

目前也有诸多基于有限状态机决策的研究[20]，如图 1.4 有限状态机所示，车辆根

据当前所处的环境选择最佳的驾驶行为，如超车、换道、避让、停车、缓慢行驶等

策略，状态机模型通过构造有向连通图来描述不同的驾驶状态以及状态之间的转移

关系，从而根据驾驶状态的迁移反应式地生成驾驶动作。Chen J[21]等人提出了一种在

复杂城市工况下自动驾驶汽车的决策方法，该决策模型主要分为三层，第一层挑选

出符合逻辑的决策，剔除人类无法驾驶的行为决策，第二层剔除违反交通规则的决

策，第三层利用多属性方法（MADM，Multiple Attribute Decision Making）考虑效率

和安全性的条件下做出最终决策；J Seo[22]等人开发了一种基于鲁棒模型预测控制的

车辆换道模型，该框架通过感知系统观测到本车和前、后方车辆的位置速度信息后，
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计算主车与前车的 TTC，查看是否有碰撞的可能，然后根据相邻车道的安全性来做

出是否继续决策的判断。 

随着机器学习、深度学习、模仿学习、强化学习的发展，目前有越来越多学者

试图通过对数据学习的方式来建立智能车的决策模型。如 Yi H[23]等人使用了决策树

分类器和贝叶斯分类器对 NGSIM 数据集中的数据进行训练，每种方法都输入 29 个

特定的变量来预测驾驶员是否产生换道决策，通过实验发现本车与目标车道前车的

速度差是影响驾驶员做出换道决策的关键性因数；杜明博[24]提出了一种基于 ID3 决

策树的决策方法，通过无人驾驶平台“智能先锋 II”采集驾驶员驾驶经验样本，然后

利用基于灰关联熵的条件属性分析法对各个条件属性的灰熵关联度排序，得到驾驶

员决策时受到各个因数的影响程度，构建出结构紧凑的决策树模型；贾寒冰[25]提出

了一种基于机器学习与规则融合的换道决策算法，首先从 NGSIM 数据集中提取换道

轨迹的初始特征，如主车和周围车辆的车速、相对距离、加速度等特征，然后从规

则的角度设计换道必要性、安全性和换道收益三个特征，然后把这些特征输入到支

持向量机（Support vector machine，SVM）模型中进行训练，并利用贝叶斯优化算法

优化 SVM的超参数得到最终的决策模型，其测试的准确率高达 83%；Xie D F[26]提出

了一种基于深度学习数据驱动的换道决策模型，采用深度置信网络（DBN）对驾驶

员换道决策建模，利用长短期记忆神经网络（LSTM）对换道执行过程建模，并在

NGSIM 数据集上进行了验证，表明提出的模型能准确预测车辆的换道过程，挖掘换

道的基本行为；Huazhe Xu[27]提出了一种端到端（end to end）模仿学习的框架，基于

FNC-LSTM 神经网络对大规模视频数据中车辆行为数据进行学习，并利用可用的场

景分割辅助任务，在特权学习范式下提高性能，作者在 BDDV 数据集上进行了测试，

其决策准确率达到了 72.4%。由于行为克隆存在域偏移问题，会导致训练出来的模型

达不到实用程度，英伟达团队 Bojarski M[28]等人采用增加扰动的方式提供更多负样本，

将距离前方车辆很近、偏离车道很远的负样本加入到训练集中，大大提升了模型的

实用性，并在实车上进行了验证；强化学习是机器学习里面一个重要的分支[29]，其

区于深度学习主要的差别体现在强化学习需要与环境不断交换，从而不断更新其策

略，最终得到回报最大的策略。Duan J[30]等人认为基于规则决策和模仿学习决策的

两种方法都需要海量标记驾驶数据去覆盖所有可能的驾驶场景，实用性较差，故提

出了一种不依赖标记数据的分层强化学习算法，该算法首先将决策策略分解为车道

内驾驶、右侧换道和左侧换道，并学习每个子策略，主策略和子策略在内的所有策
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略都由全连接层表示，并通过异步并行强化学习器（APRL）进行训练，该学习器构

建了从感官输出到驾驶决策的映射。Yu L[31]等人将深度学习与强化学习进行结合，

提出了基于深度 Q-leaning 的超车换道决策算法，利用深度学习神经网络（DNN）去

学习从动作选择到状态转换的 Q 值表，可以使算法在不同的环境中采取适当的行动

来获取更高的奖励，该方法克服了传统 Q 学习处理高维问题 Q 值表计算量爆炸的问

题。虽然强化学习、深度强化学习的理论正处于飞速发展的阶段，但目前的研究多

停留在学术阶段，将从仿真器训练得到的模型部署到实车进行验证时，仍然没有取

到较好的效果，因为仿真器与现实中的真实环境仍然存在较大差别[32]。 

由于智能车在换道过程中会与其它车辆发生交互，故许多学者基于博弈论建立

了交互模型去解决智能车换道的决策问题。早在 1999 学者 Kita H 就发现了等待换道

的车辆与它的目标车道中的车辆存在互相影响行为[33]，并将这种相互影响的行为称

为“互动”，Kita H 建立了两人非零和非合作博弈去探究这种“互动”，其中目标车道

车辆只有让道和不让道这两种策略，而换道车辆的策略为换道和不换道，博弈收益

为避免发生碰撞时间（TTC），通过对模型进行求解发现所提出的模型可用于了解入

口匝道合流路段的交通行为。美国学者 Talebpour A[34]对具有车联网环境中的车辆换

道行为进行了研究，连接了车联网的车辆可以接收来自周围车辆的实时信息，使驾

驶行为更加安全。作者提出了一种基于非零和博弈的换道博弈模型，该模型解释了

博弈车辆间的信息流对换道决策的影响，并在提出的基于虚拟游戏的仿真框架上进

行了测试，测试结果发现所提出的编导模型比基本间隙模型具有更高的精度。Peng J 

S[35]等人基于驾驶员对外部信息的感知、综合认知判断和博弈论建立驾驶员换道的决

策模型，并对模型的结构和运行机理进行了详细的分析，作者将主车与目标车道后

车之间的博弈建模为非合作混合策略博弈，通过分析得到换道博弈的纳什均衡由驾

驶安全水平、行程时间和收益的重要程度决定。Kim C[36]提出了一种基于混合动机博

弈的高速公路车辆自主换道模型，考虑到每个参与者希望停留在给定车道内或考虑

到车辆遇到的交通状况改变车道，通过每个参与者的决策组合的安全性来定义博弈

收益矩阵。通过分析收益矩阵，可以选择纯（确定性）策略或混合（概率）策略。

Yu H[37]等人提出了一种通过转向灯和横向移动与周围驾驶员交互的主从博弈换道模

型，由于在单车智能的环境中无法与他车进行信息交互，所以主车只能通过打开转

向灯给博弈车辆传递换道信号，通过博弈对象的反应来估计其激进程度，然后求解

博弈模型找到最佳换道时机和加速度，作者进行了半实物仿真证明了基于博弈论的
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控制器优于基于规则固定的控制器。Elvik R[38]等人对博弈论在智能交通领域中的应

用做了系统的论述，对在不同博弈对象之间采用何种博弈模型进行了系统的归纳总

结，如利用合作博弈模型去求解车辆最优车速，利用囚徒博弈求解最优出行时间和

是否超速，利用混合策略模型分析车辆如何汇入主路等等。国内学者如孙舵[39]在传

统的交通流模型中引入了博弈模型，将驾驶员分为两种状态，一种为“合作者”，当

其与其他车辆爆发路权冲突时，此时驾驶员会首先选择减速行为，尝试通过协商的

方式决定博弈双方谁先通过，另一种为“背叛者”，当其与另一辆车发生冲突时，此

时驾驶员选择驾驶试图抢先通过，作者最终发现驾驶员在博弈时选择成为合作者能

提升整体交通的平均速度。薛春铭[40]将车辆换道行为看成一种非合作博弈行为，提

出了基于车辆协同机制的换道车辆，首先对博弈对象的驾驶风格进行预测，分为

“理性”和“非理性”两种，然后建立各种对其不同权重的博弈收益函数，博弈收

益函数主要由加速空间大小等因素确定，再对其进行求解得到最终决策；张元量[41]

提出了一种基于主从博弈模型的智能车换道模型，作者认为对于换道的驾驶员来说

其希望通过车道变换来得到更好的驾驶环境，如更大的车头时距和更高的车速等，

不过作者的考虑的收益函数较为简单，仅仅考虑用 IDM 模型计算得到的加速度与目

标车道后车减速度的差作为车辆换道的收益，过于简化导致实用性较差；巴兴强[42] 

通过对公交车换道位置的空间分布分析，得到了不同位置公交车强制换道的概率模

型，并与交通安全、时间和换道需求为博弈收益函数的换道博弈模型相结合，得到

了公交车换道决策的多阶段互动博弈模型，通过收益相等求得混合策略博弈的纳什

均衡点，最终得到公交车的最优策略。杨晓芳[43]等人将主车与目标车道后车建模成

完全信息二人博弈模型，通过算例中速度效益变化的分析，得出的结论是原车道前

后车辆的驾驶行为仅决定了驾驶行为意图，换道比例大于实际换道比例。如果考虑

相邻车道前后车辆的影响，换道率更接近实际情况。随着时间的推移，不同速度段

的速度增量逐渐接近预期速度。 

综上所示可得，基于规则的换道决策模型考虑的因素较为简单、灵活性差，不

能满足高阶辅助驾驶的功能需求，基于机器学习的换道决策模型虽然是采用的前沿

的算法理论，但在网络建模过程中如何考虑自车与他车的交互，如何采集数据等都

存在很大难度，且在工业界落地方面仍未取得较大突破，故基于博弈论的换道决策

模型是最实用且工业界采用最多的方法，本文对主车和目标车道后车建立了

Stackelberg 博弈模型去描述基于交互的决策过程。 
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1.2.3 轨迹规划研究现状 

目前对于智能汽车而言，规划分为全局路径规划和轨迹规划，其中路径指的是

从构型空间的起点和终点之间一个连续的位置序列，故全局路径规划常指从 A 地行

驶到 B 地通过哪些街道等这种宏观的路线[44]；轨迹指的车辆在行驶过程中所处状态

的集合，它是包含时间和速度的序列[45]。轨迹规划更多的是实时的规划车辆从当前

状态到下一状态的过程，使整个路径规划的结果更符合车辆运动学约束，其包含路

径曲线和速度曲线，显然车辆换道规划属于轨迹规划范畴。目前国内外常见的车辆

换道规划算法大体可分为：基于采样的算法、基于图搜索的算法、基于曲线插值的

算法和数值优化算法[46]。 

基于采样算法的基本思想是在构型空间（configuration space）中生成样本点，并

寻找满足任务需求的样本点序列作为规划结果。基于随机采样的算法不需要对状态

空间自由区域建模，轨迹的可行性由碰撞检测来验证。常见的釆样方法包括概率路

标算法（probabilistic roadmap method，PRM）[47]以及快速搜索随机树算法[48]

（rapidly- exploring random tree，RRT）。由于 RRT 对两点之间没有精确连接的要求，

更加适合解决类似无人驾驶汽车运动规划这样的运动动力学问题，故 RRT 在无人驾

驶汽车运用更加广泛[49]。如得图 1.5 RRT 算法规划轨迹可知，快速扩展随机树（RRT）

算法是以状态空间中的起点作为根节点，通过随机采样采样，当采样点落在安全区

域时，通过计算找到当前树中离采样点最近的节点，将其与采样点连接，通过逐渐

增加叶节点，生成一个随机扩展树，当随机树的叶节点中包含了目标点或者目标区

域中的点时，从初始点到目标点之间的一条以随机树的叶节点组成的线段就是规划

出的一条路径。由于算法在进行路径规划时是随机采样，不需要对状态空间进行预

处理，因此有着很快的搜索速度，而且还考虑了车辆在运动过程的动力学约束和运

动学约東，故 RRT 也适用于智能驾驶车辆的运动规划问题。但是 RRT 算法也存在一

定的缺陷，如：虽然 RRT 算法具有概率完备性，但在每次撒点的过程中仍然具有较

大的随机性；其次，标准 RRT 算法均匀随机采样过程中大量的碰撞检测严重影响效

率[50]。针对传统的 RRT 算法的改进，近几年许多学者提出了很多方向进行改进。主

要是针对求解效率、最优性、实时性等方面的改进。如 Klemm S[51]提出了 RRT-

Connect 算法在起始位置和终止目标位置上同时构建两棵树，当两棵树在扩展的过程

中有叶子重合时则找到可行解，大大加快了采样过程；Karaman S[52]提出 anytime 
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RRT 其算法的舒适性远高于之前的采样算法，其先快速构建一个 RRT，获得一个可

行解并记录其代价，之后算法会继续采样，然后将降低可行解代价的叶子结点插入

树中，从而逐渐获得较优的可行解。 Replanning 将整个规划任务分解为若干等时间

的子任务序列，在执行当前任务的同时规划下一个任务。Mashayekhi R[53]提出了

Informed-RRT*对 RRT*的采样过程进行优化，它采用一个椭圆采样方式来代替全局

均匀采样，以此提高了算法的最优性。 

 

图 1.5 RRT 算法规划轨迹 

基于图搜索的路径规划算法的基本思想是通过一定的方法将状态空间离散成一

个搜索图，并使用各种启发式搜索算法计算其可行解。比较经典的最短路径搜索算

法有迪杰斯特拉（Dijkstra）算法[54]、A*算法[55]。Dijkstra 算法是最古老的最短路径

搜索算法，但对于给定的一组初始、目标状态，其广度优先的性质将会导致遍历太

多无用的节点，效率很低。而 A*是一种启发式最优搜索算法，其算法的基本架构与

迪杰斯特拉算法的基本一致，不同点在于引入了对当前节点到目标节点的最低代价

的评估函数，使算法的搜索方向朝着目标节点方向搜索，从而大大提高了算法的效

率。但在格子数量很多时，A*处理的节点数目过多。同时也容易出现陷入死循环、

规划出来的轨迹曲线折点多导致曲率不平滑、在动态环境中规划效果差等问题[56]。
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与基于采样的算法相同，这种类别的算法也需要在效率与最优性上进行提升。如

Ebendt R[57]提出了 Weighted A*算法，其主要思想是增大启发函数的权重去增加搜索

速度，虽然算法失去了最优性但是搜索速度却可以提高几十倍，在工程上具有一定

的应用；Likhachev M[58]等人在 Weighted A*的基础上提出了 ARA*算法，其主要思路

是一开始时选取一个较大的膨胀因子快速搜索出一条次优路线然后在时间允许的情

况下将膨胀因子慢慢降低规划出一个相对更优的路径；为解决动态环境中的搜索问

题，Stentz A[59]提出了 D*算法（Dynamic A*），其主要利用了一种反向搜索的思想，

当机器人之前的可行节点变成了障碍物，那么该节点之前的路径肯定要更新，但节

点后面的路径有可能保留，这样就节省了重新规划的计算量， LPA*[60]也是以动态规

划为基础的，该算法可以处理状态格子的运动基元的代价是时变的情况，当环境发

生变化时，它可以通过重新搜索几个节点来规划新的最优路径。 

基于曲线插值的轨迹规划主要思想是在智能车辆行驶的状态空间中进行密集采

样，每一个样本代表一个状态值，状态值是一个包含位置、速度、加速度、朝向等

信息的向量，然后用不同时刻的向量值对状态转移的过程进行插值，得到一个连续

平滑过渡的曲线，该曲线连接了自动驾驶车辆的初始状态和末状态，表示车辆从初

始状态运动到目标位置的行驶轨迹。如下图 1.6 常见插值曲线[61]所示，Dubins曲线[62]

和 Reeds and Sheep（RS）曲线[63]是连接构型空间中任意两点的最短路径，两者的区

别在于前者只能前进不能倒车而后者可以倒车，它们都是由最大曲率圆弧和直线组

成的，在圆弧和直线连接处存在曲率不连续，车辆行驶至不连续节点处时需要停车

调整前轮转角才能继续行驶，这两种曲线在非结构化道路的规划中运用较多，如泊

车规划。回旋线[64]的曲率与曲线长度成正比关系，即路径的曲率与曲线长度成线性

关系，它可以连接直线和圆弧，从而改造 Dubins 曲线和 RS 曲线，实现轨迹曲率连

续，目前多运用于大曲率场景中；多项式插值曲线是目前工业界运用最多的一种轨

迹规划曲线[65]，它可以通过设定节点条件来确定使用几阶多项式轨迹，五阶多项式

常用于横向约束控制，三阶多项式也被用于超车轨迹中[66]，其缺点是无法保证在确

定起始状态和终止状态后求得五次多项式曲线在安全空间内；贝塞尔曲线也是样条

曲线的一种，其优点在于只要把节点控制在凸的可行域内则整条轨迹都在可行域内，

具有良好的凸包性，这点对于智能车控制轨迹的安全性至关重要，Li[67]等设计了一

种基于多阶贝塞尔曲线的换道避障路径规划方法，此方法虽然能有效的调节换道效

率和乘坐舒适性之间的平衡关系，但却只适用于恒速换道。 
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（a）Dubins曲线        （b）回旋曲线     （c）多项式曲线     （d）贝塞尔曲线 

图 1.6 常见插值曲线[61] 

路径-速度解耦法分别优化路径和速度，路径优化主要考虑静态障碍物，通过动

态规划生成一条静态的参考路径（SL维度），接着基于生成的路径，考虑对速度进行

规划（ST维度）。这一过程可以不断迭代，从而实现对轨迹的实时更新。在百度的开

源自动驾驶平台 Apollo 中采用的 EM planner[71]就是基于类似的解决思路。这一方案

具有较强的灵活性，可以适用于许多场景；Shim 等[72]设计横纵向上关于时间的 6 阶

多项式模型，通过求解非凸目标函数了得到期望轨迹，虽然此方法考虑了乘坐舒适

性和运动学约束，但因为是一个非凸优化过程，所以求解效率较低，实用性差。 

综上所示，智能车高速换道轨迹规划是一个三维空间中的规划问题（横向-纵向-

时间），需要满足动力学约束的前提下高效地规划出一条舒适安全的轨迹，因为高速

场景是结构化道路，此时采用基于搜索和采样的算法效率较低，而基于差值是算法

需要提前预知车辆状态，不适合车辆换道这种动态的轨迹规划，由于传统的基于优

化的算法常把车辆当作质点模型进行建模，忽略了车辆运动学特性，故本文基于车

辆运动学的微分平坦输出构建基于七阶贝塞尔曲线的凸二次规划模型，并利用粒子

群优化算法对轨迹进行二次优化得到最终换道轨迹。 

1.3 主要研究内容及技术路线 

高级辅助驾驶系统是当今智能车发展的主要方向，目前工业界正在逐步提高 L2

级别的辅助驾驶系统的智能性，而具有主动换道功能的智能车正是其智能性提升的

一个重要表现。本文主要研究高速辅助驾驶车辆的主动换道决策规划算法，旨在帮

助驾驶员实现高效、安全、舒适的自主换道。本文的组织结构如下图 1.7 论文组织结

构所示，主要研究内容包括： 

（1）首先对诱发车辆换道的机理进行了研究，发现驾驶员的驾驶风格、换道时

间和空间是否充裕和车辆行驶状态是否良好是诱发车辆换道的主要原因；通过对强



北京理工大学硕士学位论文 

15 

 

制换道和自由换道的机理进行研究，确定自由换道为本文的研究对象；然后通过对

车辆换道过程的研究，将换道过程分为决策阶段、执行阶段和调整阶段，而本文设

计的决策规划算法正好处于决策阶段和执行阶段；在第二章的最后分析了影响换道

行为的主要因素为驾驶员、周围车辆、道路环境和天气等。 

（2）设计了一种基于遗传算法优化（GA）的深度置信网络（DBN）去产生驾

驶意图，首先利用小波阈值算法对 NGSIM 数据集进行去噪，然后根据换道车辆的车

道变化确定车辆的换道起点，再选取普通型的意图表征时窗 3s 确定换道意图产生的

时刻并提取此时刻的特征数据，选取主车车速、与周围车辆的纵向距离和速度差作

为特征输入到深度置信网络中进行训练，并利用遗传算法优化深度置信网络的超参

数如微调次数、动量、Batchsize 和学习率等，最终在测试集上验证了换道意图模型

的分类效果。 

（3）搭建了基于 Stackelberg 博弈的换道决策模型，此模型中的局中人为主车和

目标车道后车，当主车产生换道意图后，首先会根据主车和目标车辆到达潜在碰撞

点的碰撞时间差是否大于安全时间阈值来判断是否考虑与目标车道后车的博弈，若

考虑则需要计算主车和目标车道后车的博弈收益，其由速度收益、安全收益和舒适

性收益三种组成，最后通过逆向归纳法对主从博弈模型进行推演得到主车的最优决

策。 

（4）为充分考虑横纵向耦合和汽车运动学特性对轨迹规划的影响，提出了一种

分层优化的轨迹规划算法框架。利用贝塞尔曲线的凸包性，设计安全走廊约束，以

轨迹平滑性为目标函数得到一个基于贝塞尔曲线节点的下层规划器。在上层规划器

中，基于下层规划器求解得到的横纵向贝塞尔曲线和车辆运动学模型的微分平坦输

出进行三维耦合，构建满足车辆乘坐舒适性、高效性和安全性等性能的目标函数，

利用粒子群优化算法对贝塞尔轨迹初始参数进行二次优化得到综合性能最优的行驶

轨迹；通过与基于采样的五次多项式算法进行对比可知，所提出的算法得到的轨迹

综合性能更优。 

（5）为验证本文所提出算法的性能，首先基于模型预测控制算法对规划得到的

轨迹进行跟踪，搭建 Simulink 模型和 Carsim 模型进行联合仿真对不同场景中的决策

规划算法的性能进行测试，验证本文所提出的辅助驾驶主动换道决策规划算法的准

确性和安全性；对本文研究的内容进行概括和总结，并结合在对主动换道决策规划

算法研究的过程中发现的问题对未来还需研究的内容进行展望。 
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图 1.7 论文组织结构 
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第2章   智能车换道行为的基础理论 

具有高效舒适安全的主动换道能力是评价车辆辅助驾驶系统性能好坏的一个重

要评价指标，目前辅助驾驶系统主动换道功能正从传统的由驾驶员拨动拨杆传递换

道意图后车辆开始换道转变为车辆根据周围环境信息主动产生换道意图后进行换道，

达到提高效率的目的。因此本章对诱发车辆换道的内置机理、车辆换道行为的种类、

换道过程中的阶段以及换道行为的影响因数展开论述，为换道决策规划算法的研究

提供理论基础。 

2.1 诱发车辆换道的机理 

自然界中的每种行为的产生都是由其内在机理引诱的[73]，而驾驶员换道行为的

产生可以定义为：驾驶员通过眼睛等器官对本车状态和周围车道他车状态进行感知

后，根据自身喜好和历史经验做出的驾驶行为，故换道行为的产生与驾驶员及其周

围环境密不可分；本文通过对现有文献的研究，将驾驶行为产生的机理归纳为如下

几点[74]： 

（1） 驾驶员的驾驶风格，每个人都有不同的驾驶风格，在相同的工况下，积

极型的驾驶员会选择加速超车，而保守型的驾驶员则会在原始车道跟驰

前车。 

（2） 换道时间和空间充裕，车辆换道过程本质是在不同的时间时占据不同的

空间位置，所以需要驾驶员对周围环境进行评估，确保车辆在换道过程

中有足够的时间和空间操作车辆进入目标车道，且不与任何车辆发生碰

撞。 

（3） 车辆处于良好的行驶状态，在高速路段上行驶的车辆应该具备良好的动

力性，才能保证在换道过程中持续的加减速或原速达到目标车道；同时

车辆应该具备满足换道要求的硬件设施，能够满足驾驶员转换车辆到目

标车道的驾驶操作。 

总的来说诱发车辆换道的三个机理中，驾驶员的驾驶风格具体表现在在相同的

工况下驾驶员是否会表现出换道意图；换道时间和空间充裕保证了驾驶员换道过程

中的安全性，避免与周围车辆发生碰撞；车辆的行驶状态良好是保证车辆的可控性，

避免在换道过程中发生失稳不可控的情况。 
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2.2 车辆换道类型 

驾驶员换道行为可根据诱发的内在机理分为自由换道和强制换道[75]。自由换道

也称为选择性换道，该行为是一种非必须的换道，具有很强的主观性，当本车道无

法满足喜好的驾驶车速时，驾驶员会选择更变车道去达到预期的行驶车速。强制换

道与自由换道的区别是非人为因数决定的换道行为，常发生在道路合流等路况下，

此时车辆为保证安全行驶不得不采取换道操作，此时的换道行为是由路况决定的不

受驾驶员主观意图影响。 

自由换道通常发生在交通流较密集的路口，此时主车前车车速较慢时，驾驶员

不满足于跟驰前车的情况下，往往会做出追求更高车速和更高行驶效率的换道操作

[76]。如下图 2.1 自由换道场景所示，主车 TV 在四车道高速公路上行驶，主车在第二

车道行驶，发现前方有一辆车速较低的货车 A22 在前方行驶，此时主车 TV 有两种选

择，可以选择行驶效率较低的减速跟驰前方货车的策略，也可以通过换道到车道一

或车道三来避免减速。在做出决策前，主车 TV 需要对车道一和车道三的行驶空间进

行判断，从图中可知，车道一的行驶空间比车道三大，当主车 TV 的驾驶员的驾驶风

格为激进性时，其会做出追求更高行驶效率的换道到车道一的决策；若车道一或车

道三留给主车 TV 的换道空间较小，谨慎型的驾驶员会选择安全性更高的减速操作，

减速到与前方货车相同的车速进行跟驰，由此可以看出此时主车的换道行为非必要

的，需要通过驾驶员对安全性和效率两方面进行权衡后再做出决策。 

 

图 2.1 自由换道场景 
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强制换道是为了遵循道路设施避开危险而必须采取的一种驾驶行为，与自由换

道不同的是，强制换道表示必须执行换道操作才能达到其目的地，驾驶员会在一定

区域内意识到沿着本车道行驶会发生危险，此时驾驶员会选择目标车道然后缓慢调

整车速，找准时间进行换道，如果目标车道车流量很密集，则驾驶员可能会停车等

到换道时机。如下图 2.2 强制换道场景所示，主车 TV 在车道四上行驶，但发现前方

车道四会汇入车道，道路上的车道数由四个减小为三个，所以本车 TV 必须在行驶至

车道四的终点之前换入到第三车道，而此时第三车道上有 31A 和 32A 两辆车，所以主

车 TV 需要对第三车道的行驶空间进行预估，若有足够的空间，则主车进行换道，如

行驶空间较小且 32A 车速较快，则主车会慢慢减速至停车等待 32A 行驶至本车前面再

寻找机会换道。 

 

图 2.2 强制换道场景 

因为强制换道是一种确定性决策，它是在道路变窄、道路合流等情况下，车辆

为保证其行驶的安全性必须做出的换道决策，故辅助驾驶系统只需给出换道时机和

换道轨迹后车辆就能完成换道；相比于强制换道，自由换道的决策规划算法难度更

大，因为其换道的非必要性，所以辅助驾驶系统还需要决策是否换道，然后规划其

行驶轨迹，本文后续研究都是基于自由换道进行的。 

2.3 车辆换道过程划分 

目前国内外学者从不同角度对换道过程进行了划分，不过都是基于自由换道的
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划分。Van Winsum[77]从驾驶员操作方向盘的特性出发将车辆换道过程分为三个阶段，

第一阶段为驾驶员迅速转动方向盘至最大转角的过程；第二阶段为方向盘从最大转

角运动到正常状态的过程；第三部分为方向盘从零至负的过程，这部分体现车辆达

到目标车道中心线后调整自身状态使车速方向沿着车道中心线；杨建国[78]等人根据

车辆状态特性将换道过程划分为扭角、靠拢、收角和调整四个阶段，如图 2.3 换道划

分图所示，扭角为驾驶员转动方向盘导致车身开始向目标车道偏转的阶段，靠拢为

车辆在换道过程中前轮与车身平行的阶段；收角为驾驶员转动方向盘使车身慢慢回

正的阶段；调整为驾驶员调整方向盘使车辆沿着道路中心线行驶的阶段。 

 

图 2.3 换道划分图 

黄秋菊[79]将人类换道行为按照计算机的处理过程进行推理，将车辆换道行为划

分为信息感知阶段（S）、条件评价阶段（O）、选择执行阶段（R）。如图 2.4 计算机

类推的行为过程图所示，其中“输入的选择和组织：对意义的认识”对应换道过程

中的信息感知阶段，“适当要求的定义和可行行为的定型化”对应换道过程中的条件
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评价阶段，“对危险、费用等有最佳均衡的预测选择”对应换道过程中的选择执行阶

段。 

 

图 2.4 计算机类推的行为过程图 

根据自动驾驶决策规划算法模块的特性，目前在自动驾驶行业普遍将车辆换道

过程划分为决策阶段、执行阶段、调整阶段[80][81]。如图 2.5 智能车换道划分，第一阶

段为决策阶段，此时智能车会通过激光雷达和摄像头等设备获取外界信息，然后根

据主动换道意图算法去判断是否产生换道意图，若有换道意图产生，则车辆 TV 会打

开转向灯给目标车道后车传递转向意向，当目标车道后车收到车辆 TV 转向意图后会

做出对自己最有利的决策，然后车辆 TV 决策系统会以目标车道后车的决策为基础做

出符合自身利益的决策。若在决策阶段车辆 TV 做出的是换道决策，在车辆换道的执

行阶段为自动驾驶规划模块规划出车辆换道的路径曲线和速度曲线，自动驾驶控制

模块在接收到规划层传递的信息后控制车辆从本车道中心线行驶至车道线，然后车

身整体越过车道线，最后达到目标车道的车道中心线，这个过程中车辆会产生连续

的横纵向运动，等价于车辆扭角、靠拢、收角等行为。调整阶段主要是当车辆 TV 到

达目标车道的车道中心线后，此时速度与目标车道前车不相等，可能是因为目标车

道后车速度较大迫使车辆换道时存在加速行为导致的，为了稳定跟驰目标车道前车

需要调整自车车速与目标车道前车车速相等和自车车身方向与车道线方向平行的过

程。 
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图 2.5 智能车换道划分 

2.4 换道行为影响因素 

从微观交通流角度来说车辆换道行为的危险性高于车辆跟驰，因为其涉及到车

辆横纵向的运动，若换道不当更容易导致交通事故。从换道行为的本质出发可以将

其看成驾驶员、周围车辆、道路环境和天气因数共同作用的结果[82]，如下图 2.6 影响

车辆换道行为因素所示。 

 

图 2.6 影响车辆换道行为因素 

驾驶员主观意图对换道行为起主导作用，驾驶员通过视觉和听觉器官对周围车

辆状况、行驶环境、交通标识等信息进行感知，然后根据自己的驾驶特性和历史经

验做出换道决策；李硕等人指出[83]不同车型的换道频率是不相同的，因为小轿车的

体积小机动性强，所以其换道频率要高于其它大型货车、卡车。陈文娇[84]指出道路
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环境和周围车辆的状态同样对车辆换道存在一定影响，当所行驶环境中车道数越大、

车道宽度越大、红路灯等车辆标识越少，周围车辆加速度越小时，车辆换道的频率

越大；车辆换道行为是发生在自然界客观环境下的驾驶行为，故其受到自然界环境

的影响，当存在恶劣天气如大雪大雾、爆发冰雪或洪水地震时，驾驶员对自然界的

能观性变差，车辆的可控性也会变差，此时驾驶员会极其谨慎，甚至会靠边停车，

所以在此环境下车辆换道的可能性会变的极低。 

2.5 本章小结 

本章首先从驾驶员的驾驶风格、换道时间和空间是否充裕、车辆的行驶状态三

个方向出发研究了智能车换道的内在机理，然后从驾驶员换道的必然性出发将换道

类型分为自由换道和强制换道，其中自由换道主要由驾驶员的主观意图决定，具有

很强的随意性，其也是本文后续研究的重点；为开展对车辆换道行为过程的研究，

本章将车辆换道过程划分为了决策阶段、执行阶段、调整阶段，其中决策阶段和执

行阶段为本文研究的重点内容；在本章的最后详细列举了影响车辆换道行为的因数

如驾驶员主观意图、周围车辆的状态、道路环境和天气情况等。 
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第3章   基于数据驱动的主动换道意图模型 

在驾驶员行驶的过程中首先会产生换道意图，然后打开转向灯与目标车道后车

进行博弈后再进行换道操作，目前通过摄像头观察驾驶员的面部特征和方向盘转角

去识别换道意图的成果丰富[85]，但对于智能汽车来说应该尽可能少的接收人类驾驶

员传递的信号来达到驾驶目的，故基于驾驶数据去研究驾驶员如何产生换道意图显

得十分重要。 

本章提出了基于数据驱动的方法去产生换道意图，先对国际公开数据集 NGSIM

进行了去噪处理，选用小波阈值去噪能较好的去掉摄像头记录时的白噪声；选取驾

驶风格为普通型的意图表征时窗 3s，提取产生换道意图时本车与前车、目标车道前

车和目标车道后车的特征数据，输入到由遗传算法优化超参数的深度置信网络中进

行训练得到一个驾驶员意图生成模型，并与常用的分类器模型进行了对比，验证了

模型的可行性。 

3.1 NGSIM 数据选取及预处理 

3.1.1 NGSIM 数据介绍 

NGSIM 全名为 Next Generation Simulation,是美国联邦高速公路管理局于二十一

世纪初启动的微观交通研究项目[86]。该项目通过在 US101，I-80，Lankershim 

Boulevard 和 Peachtree Street 四条不同道路上的安装摄像头以 10Hz 的频率采集视频数

据，然后通过 NGVIDEO 软件从视频中提取数据;由于此项目的数据都是公开的，所

以其广泛应用于轨迹预测，意图识别等场景。 

本文聚焦于高速场景的主动换道意图是如何产生的，故选取US101和 I-80这两个

高速数据进行研究；美国 101 国道是美国国道系统西部的南北高速公路，如图 3.1 

US-101 路段所示，它全长 1519 英里。它南起加利福尼亚州的洛杉矶，北止华盛顿州

的奥林匹亚。终点在 5 号州际公路上。整个路线也大致平行于 5 号州际公路。它主要

包括五条主干道，两条匝道和一条辅道。 

I-80 是美国一条极为重要的洲际走廊，如图 3.2 I-80 路段所示，其横贯美国东西

部，同时在美国、加拿大和墨西哥之间的货物运输中发挥着关键作用，该项目在 I-80

公路上右南向北划分了七个区域进行数据，覆盖区域的长度为 2899.54 英里，其也包

含五条主干道。 



北京理工大学硕士学位论文 

25 

 

    

图 3.1 US-101 路段                                         图 3.2 I-80 路段  

NGSIM 数据格式如下表 3.1 数据格式说明，其为每一辆车都分配了一个 ID 号，

通过 ID 可以提取每一辆车某帧的横纵向坐标、车速、加速度等，同时使用者也可以

根据 ID 号和时间去提取每一辆车的轨迹。 

 表 3.1 数据格式说明 

字段 说明 单位 

Vehicle_ID 驶入采集区域车辆的标签  无 

Frame_ID 本条数据的帧号  无 

Total_Frames 该车辆数据的总帧数  无 

Global_Time 1970年 1月 1日至今的时间 毫秒 

Local_X 车辆相对于测试路段起点处的横向距离 英尺 

Local_Y 车辆相对于测试路段起点处的纵向距离 英尺 

V_length 车辆长度 英尺 

V_Width 车辆宽度 英尺 

V_Class 车辆类型 无 

V_Vel 当前时刻车辆的纵向速度 英尺/秒 

V_Acc 当前时刻车辆的纵向加速度 英尺/秒
2 

Lane_ID 车辆所处的车道编号 无 

Preceding 前方车辆的编号   无 

Following 后方车辆的编号   无 

Space_Headway 车辆距离前方车辆的距离 英尺 
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3.1.2 NGSIM 数据清洗 

NGSIM 数据集是目前在自动驾驶预测决策领域运用的最广泛的数据集之一，该

数据集是由安装在靠近高速公路的建筑物顶部的摄像机录像后通过特定软件提取得

到，由于该项目启动较早，相应的硬件设备不够精密，故此数据集存在很大的噪声，

需要对其进行去噪处理；通常情况下摄像机采集到的图片信号中的噪声为白噪声，

故本文从频域的角度出发进行去噪。由于信号在空间(或时域)上是连续的，有效信号

产生的小波系数的模量往往在小波域中较大;然而，高斯白噪声在空间(或时域)上没

有连续性。因此，经过小波变换后，噪声在小波阈值处仍表现出较强的随机性，一

般认为是高斯白噪声。那么我们可以得出结论，在小波域中，有效信号对应的系数

较大，而噪声对应的系数较小，当删去系数较小的部分就可以得到有效信号了，这

便是小波阈值去噪的原理[87]。 

小波阈值去噪的实质是抑制信号中无用的部分，增强有用的部分。小波阈值去

噪过程如图 3.3 小波去噪:(1)分解过程，即选择一个小波对信号进行 n 层小波分解;(2)

阈值处理，即对分解后的各层系数进行阈值处理，得到估计的小波系数;(3)在重构过

程中，根据去噪后的小波系数进行小波重构得到去噪后的信号。由于本文重点研究

驾驶员如何产生换道意图，故需要保证对换道和非换道数据都有较好的去噪效果，

这样才能保证后续算法训练的可行性。NGSIM 原始数据的特性可知，车辆的纵向位

置、横向位置、速度、加速度数据中噪声干扰严重程度依次增加，且车辆加速度数

据存在较多超出 23 /m s 的数据。故在对不同类型数据进行去噪处理时应该采用不同

阈值。下面将展示使用小波阈值算法对车辆的横向位置、纵向位置、纵向车速、纵

向加速度去噪平滑的过程与结果。 

 

图 3.3 小波去噪 
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（1） 非换道车辆数据去噪 

取 NGSIM 数据集中 I-80 路段时段 4：00-4.15 中车辆 ID 为 200 的原始数据去噪

结果进行展示如下图 3.4 所示，从图 3.4 I-80 时段 4：00-4：15 车辆 ID=200 数据去噪

效果图中（a）横向位置去噪效果图可知此车辆一直在一个车道内行驶，横向位置跳

动幅度接近 1m，噪声幅值较大；从（b)纵向位置去噪效果图可知数据集中的纵向位

置噪声较小，曲线较平滑；从（c) 纵向速度去噪效果图可知，纵向速度存在一些幅

度很大的波动，需要较大的阈值进行平滑；从（d）纵向加速度去噪效果图可知车辆

加速度噪声极大，噪声频率和幅度都很大，需要更大的阈值进行去噪，去噪后的纵

向加速度曲线平滑。 

 

（a）横向位置去噪效果图 

 

（b）纵向位置去噪效果图 
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（c）纵向速度去噪效果图 

                            

  （d）纵向加速度去噪效果图 

图 3.4 I-80 时段 4：00-4：15 车辆 ID=200 数据去噪效果图 

（2）换道车辆 

取 NGSIM数据集中 I-80路段时段 5：15-5：30中车辆 ID为 500的原始数据去噪

结果进行展示如下图 3.5 所示，从图 3.5 I-80 时段 5：15-5：30 车辆 ID=500 数据去噪

效果图中 a）横向位置去噪效果图可知车辆在连续换道，横向位置噪声较小，只有在

越过车道线时存在一定噪声，曲线整体平滑性较好，故换道车辆横向位置噪声小于

非换道车辆横向位置噪声；从 b）纵向位置去噪效果图可知数据集的纵向位置噪声较
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小，曲线较平滑，故换道车辆和非换道车辆的纵向位置噪声都较小；从 c）纵向速度

去噪效果图可知，纵向速度存在一些幅度很大的波动，其幅度大小小于非换道车辆

车速噪声的幅度，但噪声产生的频率大于非换道车辆车速的频率，整体而言换道车

辆速度的噪声大于非换道车辆速度噪声；从 d）纵向加速度去噪效果图可知换道车辆

加速度的噪声同样极大，需要更大的阈值进行去噪，去噪后的纵向加速度曲线平滑，

故可得换道车辆和非换道车辆的加速度噪声都极大，加速度特征不利于模型对驾驶

意图进行学习。 

（a）横向位置去噪效果图 

 

 （ b）纵向位置去噪效果图 
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c）纵向速度去噪效果图 

  

d）纵向加速度去噪效果图 

图 3.5 I-80 时段 5：15-5：30 车辆 ID=500 数据去噪效果图 

3.1.3 NGSIM 数据提取 

驾驶员驾驶车辆行驶时的换道行为是一种动态微观行为，根据第二章可知产生

驾驶意图时刻为决策阶段的起点，换道意图产生起点至车辆换道起点持续的时间称

为意图表征时窗[88].意图表征时窗一直是国内外学者研究的一个热点，但目前仍然未

形成一个被所有行业者接收的行业标准。 
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Doshi[89]等人通过摄像机拍摄的驾驶员的视觉特效，分别对 2s 和 3s 的意图表征

时窗进行识别比较，发现前者的识别率较高；冯杰[90]对不同驾驶风格的驾驶员首次

关注后视镜与方向盘转角发生变化的时间差进行统计，得出驾驶风格为冲动型、普

通型、谨慎型的意图表征时窗分别为 2s、3s、5s； 

Fitch[91]等人通过比较意图表征时窗为 8s 和 3s 时驾驶员注视区域的视觉规律，发

现意图表征时窗为 3s 时驾驶员视觉区域有明显的注视规律。Lee 等人对 8667 次换道

样本进行深入分析发现在驾驶员开始换道的前 3s 有明显的视觉规律，确定 3s 为意图

表征时窗[92]；综合上所示本文选择 3s 为意图表征时窗，故需要从 NGSIM 中提取换

道意图产生时刻时周围车辆信息进行学习与挖掘。 

为了对驾驶员产生换道意图的内在机理进行研究，需要提取 NGSIM 数据集 I-80

和 101两条高速公路中乘用车自由换道的数据集进行提取，同时也需要提取部分乘用

车直行的数据用于训练，本文基于如下流程对原始数据进行提取： 

（1）NGSIM 数据集中 I-80 和 101 公路的第 6 车道是汇入匝道，车辆从第 6 车道

汇入第 5车道的换道行为属于强制换道，不属于本文研究的范围，故在提取数据时只

提取第1至第5车道的数据；在NGSIM的原始数据集中Lane_ID表示车辆所处车道，

可通过对 Lane_ID 的归类提取前 5 个车道的数据。 

（2）NGSIM数据集中包含了高速公路上行驶的多种类型的车辆，如摩托车、乘

用车、商务车等。本人主要是针对乘用车的换道意图进行研究，故只提取乘用车的

数据。在 NGSIM 原始数据中 V_Class 表示车辆的类型，可以通过对 V_Class 进行识

别来提取乘用车的数据. 

（3）在原始 NGSIM 数据集中包含连续换道行为，连续换道和非连续换道特征

存在一定差别，不适用于研究自由换道意图的产生，所以需要删除连续换道的数据；

具体做法是通过车辆在所有帧数中的 Lane_ID 进行判断，若 Lane_ID 类型超过 2个，

则此车辆存在连续换道行为。 

（4）确定开始换道时刻，目前国内外关于换道时刻的研究成果丰富，目前行业

内认可的做法是取车辆车道 Lane_ID 发生变化，即换道成功的时刻为 t，在[t-5，t]这

段数据范围内寻找横向加速度首次大于 0.2 2/m s 的时刻作为换道开始点，如下图 3.6

换道位移图。 

（5）确定换道意图产生起点，本文选用驾驶风格为普通型的意图表征时窗 3s,故

换道意图产生的起点时间为 t-3。 
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（6）为了保证提取的换道数据多为普通型，本文删除了部分激进型数据如：删

除了目标车道前车速度和车距都比本车道小，但是依旧换道的样本。 

 

图 3.6 换道位移图 

3.2 基于遗传算法优化的 DBN 网络换道意图生成 

为探索车辆自由换道意图产生的内置机理，本文对提取得到的 1564 条轨迹，包

含 782条换道轨迹和 782条非换道轨迹进行分析与挖掘，选取其中 70%的数据集为训

练集，30%的数据为测试集。由于近年来深度神经网络在探索数据内置机理和映射方

面取得显著成就，故本文采用深度学习的方法建立换道意图产生模型。 

早期的机器学习、深度学习存在诸多弊端，如模型鲁棒性差、训练耗时长、收

敛性差等等，随着人工智能领域的高速发展，深度神经网络在逐步完善。DBN 深度

置信网络是一种典型的深度学习网络，其具备良好的概率生成能力，故本文选取

DBN 网络来研究换道意图产生的内置机理。 

3.2.1 DBN 基本结构和训练流程 

DBN（Deep Belief Networks，DBN）[93]全名深度置信网络，它是一种概率生成

模型，通过训练每一层神经元之间的权重，让整个网络模型按照最大概率来生成训
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练数据。深度置信网络由多个受限玻尔兹曼机组成（restricted Boltzmann machine, 

RBM），其网络结构如下图 3.7 RBM 结构所示。它由可视层 iv 和隐含 ih 组成，每一层

都可以用一个向量表示，层间是双向连接层内不存在连接，权重矩阵 ijW w=（ ）表示

可视层单元 iv 和隐含层单元 ih 之前的权重；同时每一个可视层单元 iv 都有其对应的

偏置 ia ，每一个隐含层单元 jh 也都有其对应的偏置 jb ；RBM 实际训练的过程中就是

学习权重矩阵和隐含层、可视层的偏置来使网络输出的结果与实际结果的误差尽可

能小。 

 

图 3.7 RBM 结构 

根据如上定义可知对于给定状态向量的 h和 v，则受限玻尔兹曼机的能量函数可

表示为： 

( , ) i i j j j ij j

i j i j

E v h a v b h h w v= − − −                        (3.1) 

根据热力学理论定义隐含层和可视层的联合概率分别为： 

( , )1
( , ) E v hP v h e

Z

−=                                           (3.2) 

其中 ( , )

,

E v h

v h

Z e−= 为归一化因子，也叫分配函数。 

由于受限玻尔兹曼机为一个二分图，隐含层和可视层层内都没有连接，因此在

给定可视层节点取值的情况下隐含层是否激活是条件独立的，类似情况下可视层节

点的激活状态也是条件独立的，所以对于 m 个可视层节点和 n 个隐含层节点，可视

层对隐含层的条件概率如下： 

1

( | ) ( | )
m

i
i

P v h P v h
=

=                                         (3.3) 
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同理隐含层对可视层的条件概率如下： 

1

( | ) ( | )
m

i
i

P h v P h v
=

=                                         (3.4) 

其中单个节点的激活概率为： 

1

( 1| ) ( )
m

j j ij i

i

P h v b w v
=

= = +                                     (3.5) 

1

( 1| ) ( )
m

j i ij i

j

P v h a w h
=

= = +                                     (3.6) 

其中 代表逻辑函数。 

如图 3.8 深度置信网络结构所示，深度置信网络由多个受限玻尔兹曼机组成，图

中为 3 个 RBM 组成的 DBN。其中，第一层的 RBM1 由可视层 1v 、权重矩阵 1w 和隐

含层 1h 组成；第二层的 RBM2 由第一层 RBM1 的隐含层 2v ，即 1 2h v= ，和隐含层 2h

组成；第三层的 RBM3 由第二层 RBM2 的隐含层 3v ，即 2 3h v= ，和隐含层 3h 组成。

DBN 就是通过多个 RBM 组合而成的。本文运用 DBN 进行驾驶意图分类，第一层输

入的是从 NGSIM 中提取的换道特征，经过每一个 RBM 后都将把其输出送入下一个

RBM进行训练，由于本文集中研究驾驶员图产生机理，故在最后一层加上了Softmax

分类器，使整个网络训练为一个二分类器。 

 

图 3.8 深度置信网络结构 
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DBN 神经网络参数包含两大类，第一类为超参数如学习率、动量、训练代数、

隐含层和各隐含层节点数等等，这类参数需要在训练模型之前确定，目前学术界还

没有成熟的理论去设置最优的超参数，本文后续会利用进化优化的算法去优化超参

数；第二类是训练参数主要包含每一层的偏置和权重矩阵。 

DBN 网络的训练过程主要分为两大步：第一步是预训练，即分别单独无监督的

训练每一层 RBM，其本质是针对某一训练集 V，最大化概率的乘积： 

arg  max ( )
W

v V

P v


                                            (3.7) 

目前工业界最常见的算法是对比分歧（contrastive divergence，CD）算法。这一

算法最早被用于训练辛顿提出的“专家积”模型，其结构如图 3.9 对比分歧算法，偏置

a和 b 也可以使用类似的方法更新。 

 

图 3.9 对比分歧算法 

第二步是由高层RBM到底层RBM向后微调，在DBN的最后一层添加BP网络，

接收 RBM 的输出特征向量作为其输入特征向量，并有监督地训练实体关系分类器。

RBM 网络训练模型的过程可以看作是深度 BP 网络权值参数的初始化，这使得 DBN

克服了 BP 网络由于权值参数的随机初始化而导致其容易陷入局部优化、训练时间长
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等缺点。 

3.2.2 特征变量选取 

任意换道是驾驶员采取的一种换道行为，也称为自由换道行为。其最终目的是

驾驶者为了实现个人主观驾驶需求而进行的操作，如变速(加减速)、超越前方低速车

辆、获得适当的行驶空间等。当驾驶员跟车时，行驶速度比前车快，且驾驶员判断

相邻车道满足换道的时间和空间，且行驶条件较好，通常会自由换道。为保证自由

换道的安全性，必须满足如下两个条件：第一个是本车与目标车道前车必须具有足

够的安全空间这样才能保证主车换道到目标车道时存在足够的安全空间避免发生碰

撞，这个主要是对目标车道前车与本车的相对距离、速度、加速度有一定要求;第二

个是原始车道存在足够的换道时间可以让本车在与前车发生碰撞之前完成换道，这

个主要是对本车与前车的距离、速度、相对加速度存在一定要求。 

 

图 3.10 与 TV 换道相关的特征量示意图 

表 3.2 特征量符号说明 

字段 说明 单位 

dy1 TV 与 FV1 之间的距离  m 

dy2 TV 与 FV2 之间的距离  m 

dy3 TV 与 RV2 之间的距离  m 

v TV 的车速 m/s 

dv1 TV 与 FV1 之间的车速差 m/s 

dv2 TV 与 FV2 之间的车速差 m/s 

dv3 TV 与 RV2 之间的车速差 m/s 
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目前学术界针对从换道起点开始提取数据特征训练得到的决策模型是把本车与

前车、本车与目标车道的前车、后车的距离、速度、加速度差等 11 个因数作为特征

量进行学习，而本文关注于研究驾驶员意图产生的时刻的数据特征，且取定的意图

表征时窗为 3s，驾驶风格是普通型，换道意图产生时刻驾驶员对速度和距离的关注

度更高，故本文只选用相对距离和相对车速这 7个特征量，同时在后续的训练过程中

证明了针对换道意图的识别用 7 个特征量训练的准确率要比用 11 个特征量训练的准

确率高 5 个百分比以上，具体选用特征的含义和符号表示见图 3.10 与 TV 换道相关的

特征量示意图和表 3.2 特征量符号说明。 

3.2.3 遗传算法优化 DBN 参数 

DBN 的超参数众多，这些超参数选择的好坏对训练结果有较大的影响，故需要

对这些超参数进行优化。目前学术界采用的主要有网格搜索，其在一定的时间间隔

内，尝试各种可能性，通过循环遍历计算其约束函数和目标函数的值。对于满足约

束条件的点，逐一比较其目标函数的值，剔除坏点，保留好点，最后得到最优解的

近似解；随机搜索主要原来是在一定区间内随机生成点，而不是有倾向地生成点，

并计算其约束函数和目标函数的值。对于满足约束条件的点，逐个比较其目标函数

的值，剔除差点，保留好点，最终得到最优解的近似解；启发式搜索其原理是在状

态空间中搜索计算每个搜索的位置以获得最佳位置，然后从该位置搜索到目标。这

样可以省略很多不必要的搜索路径，提高效率，与前两种超参数搜索算法相比，启

发式搜索算法效率较高，更加适合 DBN 这种超参数较多的模型，本文选择启发式搜

索算法中的遗传算法进行超参数优化。 

 

图 3.11 遗传算法结构图 
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遗传算法是计算数学中用于求解优化问题的一种搜索算法，是一种进化算法。

进化算法最初是参考进化生物学中的一些现象而发展起来的，包括遗传、突变、自

然选择和杂交。在求解过程中，设定了一个固定规模的种群，种群中的每个个体代

表了问题的一个可能解。个体对环境的适应程度由适应度函数来判断。适应度差的

个体被淘汰，适应度好的个体可以继续繁殖。在繁殖过程中，需要进行选择、杂交、

变异形成新的种群以避免陷入局部最优，当适应度差值满足收敛条件或达到进化代

数时寻到最优超参数，具体流程参考图 3.11 遗传算法结构图。 

3.2.4 训练结果分析 

在利用遗传算法进行优化时需要对超参数的范围进行设置从而加快优化速度避免

无效优化，故设置预训练学习率的范围为 0.01到 0.1,微调训练的学习率的范围为 0.01

到 0.5，动量的范围为 0.1 到 1，RBM 的迭代次数是 1 到 20，DBN 微调的迭代次数是

1到 100，Batchsize是 1到 256，隐含层数量是 1到 3，隐含层节点是 10到 100；如图 

3.12微调次数优化可知微调次数经过 10次迭代收敛到 92次，从图 3.13 动量优化可知

动量从 0.95 开始优化迭代最终经过 9 次迭代收敛到 0.8804，整体而言遗传算法收敛

结果较快，最终优化得到的最优超参数为：预训练学习率为 0.02077、微调学习率为

0.3877、动量为 0.8804、预训练次数为 8、微调次数为 92、Batchsize为 65、隐含层层

数为 2、隐含层节点数 57。 

 

 图 3.12 微调次数优化 
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图 3.13 动量优化 

车辆换道意图识别是一个二分类问题，通常有混淆矩阵、准确率、精确率、召回

率这四种评价指标： 

（1） 混淆矩阵是分类器的一级评价指标，其本质是统计真实值中的正负样例和

预测值中的正负样例，如下图 3.14 混淆矩阵示意图所示，以矩阵的形式

可视化分类器的性能，混淆矩阵的对角线上的数量为被正确分类的数量。 

 

图 3.14 混淆矩阵示意图 

（2） 准确率是最为直观描述分类器的评价方法，其表达式如下： 

TP TN
ACC

TP FP TN FN

+
=

+ + +
                                (3.8) 

（3） 精确率是指被预测为正例的样本中实际为正例所占的比例，其表达式如下： 

TP
PRE

TP FP
=

+
                                             (3.9) 

（4） 召回率是预测为正例的样本占实际样本的比例，其表达式如下： 
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TP
TPR

TP FN
=

+
                                            (3.10) 

本文分别用 DBN、GA-DBN、SVM、决策树模型进行训练，并以 30%的数据作

为测试集进行验证，各自的混淆矩阵如图 3.15 混淆矩阵图所示,深蓝色区域代表预测

结果和真实种类相同的区域，其中的数据代表案例的个数，白色区域代表预测结果

和真实结果不相同的区域。 

 

     图（a） GA-DBN 混淆矩阵                                  图（b） DBN 混淆矩阵 

  
图（c） SVM 混淆矩阵                                        图（d） 决策树混淆矩阵 

图 3.15 混淆矩阵图 

通过计算各个算法的混淆矩阵得到其准确率、精准率、召回率如表 3.3不同模型

比较所示;基于遗传算法优化的深度置信网络的各项性能都明显优于另外三种算法，

且其精确率略高于其召回率说明此算法对不换道意图的识别准确率略高于换道意图

的识别，这也说明从 NGSIM 数据集中提取得到的不换道数据集特征更明显一些，横
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向对比相关研究如贾寒冰提出的基于规则和机器学习融合的换道识别的准确率[94]，

证明本文提出的算法已达到前沿水平。 

 表 3.3不同模型比较 

 准确率 精确率 召回率 

GA-DBN 0.8234 0.8383 0.8140 

DBN 0.7596 0.7830 0.7480 

SVM          0.7851 0.8042 0.7746 

决策树 0.7447 0.7660 0.7347 

3.3 本章小结 

本章设计了基于 GA-DBN 算法的智能车辆主动换道意图模型。运用小波阈值算法

对美国开源数据集 NGSIM中两条高速公路中车辆的位置、速度、加速度进行了去噪处

理，然后根据车辆所属道路 ID的变化和横向加速度确定换道起点，再选取 3s的意图

表征时窗去确定换道意图产生的起点并对此时的数据进行提取确定模型的特征数据；

因为深度置信网络具有许多需要在初始时就提供的超参数如动量、学习率、迭代次

数等等，所以本文运用一种基于进化优化的算法——遗传算法去优化这些超参数，

最终 GA-DBN 训练的模型在测试集上的准确率、精确率、和召回率分别为 0.8234、

0.8383、0.8140，高于其它分类算法，证明了此模型的可行性。 
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第4章  基于 Stackelberg 博弈的换道决策 

当驾驶员产生换道意图时，会打开转向灯与周围车辆进行交互，在收集到一定

信息后，驾驶员再做出最终决策。而博弈论是一种研究智能体在合作或竞争中考虑

其它个体的预测行为和实际行为后选择自己最优策略的学科，本章首先介绍了博弈

模型的基本要素，其中局中人、策略集和收益函数为构建博弈的基本要素，然后对

比了几种博弈类型的特性，将车辆换道过程中的博弈归为 Stackelberg 博弈，并计算

主车和目标车道后车到潜在碰撞点的时间去判断此时是否满足博弈起始条件，若满

足则计算主车和目标车道后车的速度收益、安全收益、舒适收益构建博弈收益矩阵，

然后通过逆向归纳法去推演出最优策略。 

4.1 博弈论的基本理论 

4.1.1 博弈的基本要素 

博弈论又名为对策论，是运筹学的一个分支，于 1928 年由美国科学家冯·诺依曼

证明其基本原理而诞生，其以公式数学的形式表述了激励结构间的相互作用，并研

究它们的优化策略。目前博弈论广泛应用与经济学、计算机科学、生物学、国际军

事战略等学科[95]。一个完整的博弈主要由局中人、策略集、收益函数、信息、均衡、

博弈结果等六个元素，其中局中人、各局中人的策略集、各局中人的收益函数是描

述一个博弈模型的最基本元素，各元素的定义如下： 

（1） 局中人：局中人是指博弈中能自主决策的主体，通常又称为参与人。局

中人通过选择自己的行动来获取最大的收益，在一般的博弈中局中人都

是两个人以上，局中人可以是企业、团队、国家等。 

（2） 策略集：策略集指局中人对其它局中人的行动能做出的反应动作的集合，

每个策略集都包含至少两个以上的元素。 

（3） 收益函数：收益函数是对所有局中人采取的策略的评价指标，其通常表

现为盈亏、输赢、得失等；收益函数与所有局中人采用的策略都有关，

其大小必须用数值表示，用于评价剧中人选择策略的好坏。 

（4） 信息：信息指局中人在博弈过程中所能了解和观察到的其它局中人的策

略集、收益函数和特征等。 

（5） 均衡：均衡是指在一场博弈中所有局中人达到平衡的状态时的策略组合，
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此时每个局中人的收益函数都达到最大化。 

（6） 博弈结果：博弈结果是指在一场博弈过程中，所有局中人在达到均衡状

态后采用的策略、策略的收益函数等。 

4.1.2 博弈的类型 

在建立博弈模型之前需要针对问题的特征，确定模型的种类，目前主要从参与

人数、信息掌握程度、收益代数和、博弈次数、合作类型和决策顺序这六个方面进

行划分[96]： 

（1） 二人博弈和多人博弈：当局中人数量只有二时，称此博弈模型为二人博

弈；当局中人人数大于二人时，称此博弈模型为多人博弈。 

（2） 零和博弈和非零和博弈：当所有局中人的收益之和为零时，称此博弈模

型为零和博弈；当所有局中人的收益之和不等于零时，称此博弈模型为

非零和博弈。 

（3） 完全信息博弈和非完全信息博弈：当每一位局中人对其它局中人的特征、

策略集和收益函数都准确知道时，称此博弈模型为完全信息博弈；当局

中人对其它局中人的特征、策略空间和收益函数不够了解时，称此博弈

模型为不完全信息博弈。 

（4） 有限次博弈和无限次博弈：当所有局中人之间的博弈次数是有限次时，

称此博弈模型为有限次博弈；当所有局中人之间的博弈次数为无限次时，

称此博弈模型为无限次博弈。 

（5） 静态博弈和动态博弈：当所有局中人同时做出决策或局中人非同时决策

但后决策者不知道前决策者采用的什么决策，称此博弈模型为静态博弈；

当局中人的决策有先后顺序，且后决策的局中人能观测到先决策的局中

人的决策信息，称此博弈模型为动态博弈。 

（6） 合作博弈和非合作博弈：当所有局中人之间存在一个具有约束力的协议，

能影响到各种的决策时，称此决策模型为合作博弈；当所有局中人在决

策时没有任何约束时，称此博弈模型为非合作博弈。 

目前自动驾驶发展有两条路线，一种是借助 V2X 技术实现车车通信、车路协同，

通过车辆间共享的信息去进行决策；另一种是不利用 V2X 技术的单车智能路线，即

车车之前无法进行信息通信和信息共享。目前国内 V2X 大型基建还没有完善，以单
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车智能为主，故车辆换道属于不完全信息的非合作博弈，而在车辆换道过程中与本

车道前车和目标车道前车互动较少[97]，主要与目标车道后车存在博弈行为，且存在

一定的先后顺序，如主车产生换道意图时，会打开转向灯把换道意图传递给目标车

道后车，在后车做出如加速、减速或保持原速的决策后，主车再根据目标车道后车

的决策做出决策，属于换道过程也是应该动态博弈过程；综上所示，智能驾驶汽车

主动换道过程中的博弈模型是 Stackelberg 博弈模型。 

4.2 车辆换道博弈模型建立 

4.2.1 车辆换道博弈起始条件 

当驾驶员产生换道意图后，需要对周围环境进行进一步确定，才能确定是否会

与目标车道后车进行博弈；目前学术界普遍利用碰撞时间差来进行判断主车是否会

与目标车道后车进行博弈[98]，如图 4.1 车辆换道示意图所示，换道车辆 TV 的行驶轨

迹如红色虚线所示，目标车道后车 RV 的行驶轨迹如蓝色虚线所示，两车在目标车道

上的交汇点为潜在碰撞点，当 TV 决策换道操作时，其轨迹的横纵向坐标用七次贝塞

尔曲线描述： 
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                                     (4.1) 

式中 1s 、 2s 为每一段贝塞尔曲线对应的实际时间； { , }x y 表示横向和纵向两

个方位，具体细节可见第五章。 

 

 图 4.1 车辆换道示意图 



北京理工大学硕士学位论文 

45 

 

此时，目标车道后车 RV 保持当前速度和加速度在本车道继续行驶，将两者到达

碰撞点 A点的时间差定义为碰撞时间差，碰撞时间差越小，主车 TV的换道行为越危

险，由于车辆是具有一定物理体积的，故有： 

a e cary y w= −                                                      (4.2) 

其中 ey 是主车 TV 换道轨迹曲线的终点， carw 为车辆宽度。 

 通过上两式可计算得到主车行驶到潜在碰撞点的时间 0t ,可计算主车到碰撞点 A

的距离： 

0

0

2 2

0

2 3 4 5 6 7 2 2 3 4 5 6 7 2

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
0
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L x y dt

t t t t t t t t t t t t t t dt               

= + =

+ + + + + + + + + + + + + + +





(4.3) 

 目标车道后车 RV 到潜在碰撞点 A 的距离为： 

RV aL x x= +                                                      (4.4) 

其中， x 为两车在纵向上的车头间距。 

 主车在换道的过程中，并不是只要目标车道存在前车和后车，主车都需要与他

进行博弈，只有主车 TV 和目标车道后车 RV 存在一定路权争端时，即他们的碰撞时

间差不超过一定阈值时，两车才满足换道博弈的条件，即： 

TV RV

M

TV RV

L L
T

V V
−                                                  (4.5) 

其中， TVV 代表主车当前车速、 RVV 代表目标车道后车车速， MT 为安全时间阈值，

一般取 3s[99]。 

4.2.2 车辆换道博弈流程 

在第三章中我们利用数据驱动的方式探究了驾驶员换道意图产生的机理，并在

上一节中我们确定车辆换道属于 Stackelberg 博弈模型。则可知 Stackelberg 博弈模型

中局中人为主车 TV 和目标车道后车 RV2，主车 TV 的策略集为换道和不换道，目标

车道后车 RV2 的策略集为避让和不避让；信息为主车 TV 和目标车道后车 RV2 自身

具有的信息如位置、车速等；收益为主车 TV和目标车道后车 RV2分别采用的策略形

成策略矩阵后获得的各自的收益；均衡为使主车 TV和目标车道后车 RV2获得最大化
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收益的策略。 

如图 4.2 车辆换道博弈过程图可知，当 GA-DBN 模型产生换道意图时，主车 TV

会打开转向灯传递转向意图给目标车道后车 RV2，此时目标车道后车 RV2 可能会通

过减速的操作来给主车 TV 让出换道空间，但激进一些的驾驶员可能不能容忍主车

TV 的换道行为会采取加速逼近的操作来迫使主车 TV 放弃换道，故此时目标车道后

车 RV2 会根据自身的驾驶风格建立博弈收益矩阵去量化收益，然后选择收益最大的

策略，同时主车 TV会在预测目标车道后车 RV2最优策略的基础上根据博弈收益矩阵

选择自己的最终策略，即根据目标车道后车 RV2 是否选择避让来再次确定是否进行

换道操作。 

 

图 4.2 车辆换道博弈过程图 

 由上可知，车辆换道过程可以看成是一个两阶段的动态博弈，主车TV和目标车

道后车 RV2 都是根据对方的可能策略来选择自己的策略以保证自己在对方的策略下

的收益最大化，从而达到纳什均衡。在此博弈中，主车 TV 先打开转向灯做出决策，

称为 leader，剩余的局中人根据 leader 的决策进行决策的称为 followers。整个完整的

换道博弈流程如图 4.3 换道博弈流程图所示。 

4.2.3 博弈收益函数 

当主车产生换道驾驶意图且满足换道博弈条件后，需要建立主车和目标车道后

车的收益博弈矩阵，通过对博弈矩阵的分析可以得出主车和目标车道后车的最优策
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略。博弈矩阵中的收益是车辆采取某种行动后的总收益，通常由速度收益、安全收

益、舒适性收益三部分组成: 

 

图 4.3 换道博弈流程图 

1、速度收益 

 从驾驶员的角度出发，主车要通过改变车道来获得更高的速度收益，因此对于

换道和不换道两种策略都需要定义和计算速度收益。如下图 4.4 车辆行驶示意图所示，

当主车 TV 选择换道时，主车 TV 的跟驰目标从 FV1 改为了 FV2，此时 TV 的预期车

速就是 FV2的车速，则主车 TV和目标车道前车 FV2的速度差为主车 TV改变车速的

收益: 

1 2 ( ) ( )vel FV TVU V t V t= −                                                 (4.6) 

其中 1velU 为主车 TV 选择换道策略的收益函数， TVV 和 2FVV 是主车 TV 和目标车道

前车在 t 时刻的车速。 

 当主车 TV选择不改变车道的策略时，主车 TV将受到前车 FV1的限制，所以此

时主车 TV 的速度收益可以用前车 FV1 与主车 TV 的速度差表示： 

2 1( ) ( )vel FV TVU V t V t= −                                                  (4.7) 
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其中 2velU 为主车 TV 选择不换道策略的收益函数， TVV 和 1FVV 是主车 TV 和前车

FV1 在 t 时刻的车速。 

 

图 4.4 车辆行驶示意图 

 同理 RV2 在与 TV 的博弈过程中，若选择避开 TV，它就需要选择减速，此时会

牺牲车速利益，利用安全时间阈值可得 RV2 需减速到： 

2

( )

RVa

RV

TV M

L
V

T t T
=

+
                                                        (4.8) 

其中 RVL 为目标车道后车 RV2 到潜在碰撞点的距离， ( )TVT t 为主车 TV 行驶到潜

在碰撞点的时间， MT 为安全时间阈值。 

目标车道后车 RV2 减速避让后的车速与初始车速的差做为 RV2 避让策略的收益： 

3 2 2 ( )a

vel RV RVU V V t= −                                                     (4.9) 

同理若 RV2 采取不避让策略，RV2 将继续跟驰目标车道前车 FV2，则 FV2 与

RV2 的车速差为选择不避让策略的收益： 

4 2 2( ) ( )vel FV RVU V t V t= −                                             (4.10) 

其中 2FVV 和 2RVV 是目标车道前车 FV2 和目标车道 RV2 在 t 时刻的车速。 

2、安全收益 

在车辆进行换道博弈的过程中，首先应该保证驾驶的安全性，故需要设计安全

性收益指标。当主车 TV选择换道策略时，会存在与目标车道后车 RV2发生碰撞的风

险，故可以利用两车的碰撞时间差 T 去描述，当碰撞时间差 T 大于安全时间阈值

MT 时，此时主车 TV 可直接选择换道策略因为其与目标车道后车不存在博弈关系，

所以此时的安全收益最大为 0，当 T 为 0 时，代表两车几乎同时到达潜在碰撞点，

会发生碰撞，则此时的安全收益应该是负无穷大，如图 4.5 安全收益函数所示，故可

设计安全收益函数为： 
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1 3

 , T 0

T
ln( ) , 0< T<T

0 , T T

saf saf M

M

M

U U
T

−  



= = 


  

                                 (4.11) 

其中， 1safU 和 3safU 代表主车 TV 选择换道时，TV 和 RV2 的安全收益，

TV RV

TV RV

L L
T

V V
 = − ， TVV 代表主车车速、 RVV 代表目标车道后车的车速， MT 为安全时间

阈值，一般取 MT =3。 

 

 图 4.5 安全收益函数  

 当主车TV不换道时，两车均在原始车道行驶，不会发生碰撞，此时两车的安全

收益均为最大值 0，即 2 4 0saf safU U= = . 

3、舒适性收益 

对于智能车而言，舒适性也是评价其算法性能好坏的一个重要因素，由车辆动

力学可知当车辆突然加速或减速时都会产生较大惯量，会降低驾驶员的乘坐舒适性，

故可以用加速度的变化量来表示舒适性的收益，所以主车 TV 的舒适性收益为： 

1 2 ( ) ( )acc acc TV TVU U a t a t i= = − − −                           (4.12) 
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其中， 1accU 和 2accU 为主车选择换道和不换道策略时舒适性收益， ( )TVa t i− 表示上

一个时刻主车 TV 的加速度，其大小根据规划层规划得到的速度曲线确定。 

同理，目标车道后车的舒适性收益为： 

3 4 ( ) ( )acc acc RV RVU U a t a t i= = − − −                          (4.13) 

其中， 4accU 和 4accU 为目标车道后车 RV2 选择避让和不避让策略时舒适性收益，

2 ( )RVa t i− 表示上一个时刻目标车道后车 RV2 的加速度，其大小根据 IDM（Intelligent 

driver model）跟驰模型确定,其表达式如下： 

0

22
[1 ( ) ( ) ]

f

v v
s vT

v ab
v a

v h L


+ +

= − −
−

                     （4.14） 

式中： a为车辆最大加速度， v为车辆当前速度， fv 为目标车速， 0s 为最小安全

间距，T 为安全车头时距， b 为期望减速度， v 为主车与本车道前车的速度差， h

为车头间距， L为车长。 

 通过上述三种收益函数表达式可知，每种收益函数的量纲是不一样的，故需要

对其进行归一化，目前常用的归一化方法有 min-max 标准化、0 均值标准化这两种，

本文中选取 min-max 标准化方法，又因为博弈收益中安全性收益和舒适性收益都是

负值，收益还需要保留原始数据的正负性，故设计归一化函数为： 

( in)
( ) 2* 1

( )

x M
f x

Max Min

−
= −

−
                                (4.15) 

综上所示可知，换道博弈的总收益由速度收益、安全收益、舒适性收益三者组

成，则主车与目标车道后车的博弈收益矩阵如表 4.1 博弈收益矩阵所示： 

表 4.1 博弈收益矩阵 

策略 RV2 避让 RV2 不避让 

TV 换道 （
1

TVU ，
1

2RVU ） （
2

TVU ，
2

2RVU ） 

TV 不换道 （
3

TVU ，
3

2RVU ） （
4

TVU ，
4

2RVU ） 

在策略组合为{TV 换道，RV2 避让}时，TV 和 RV2 的总收益为： 

1

1 1 1 1 1 1( ) ( ) ( )TV vel saf accU f U f U f U  = + +                           (4.16) 

1

2 2 3 2 3 2 3( ) ( ) ( )RV vel saf accU f U f U f U  = + +                         (4.17) 
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其中， 1

TVU 和 1

2RVU 表示主车 TV 做出换道决策、目标车道后车 RV2 做出避让决策

时，TV 的总收益和 RV2 的总收益， ( )f 为归一化函数， 1 、 1 和 1 代表主车 TV 速

度收益、安全收益和舒适性收益的权重， 2 、 2 和 2 代表目标车道后车 RV2 速度收

益、安全收益和舒适性收益的权重，其由各自的驾驶风格决定[100],本文将驾驶风格分

为三大类谨慎型、普通型和激进型，其各自收益的权重如表 4.2不同驾驶风格的收益

权重所示[101]： 

表 4.2不同驾驶风格的收益权重 

类型 谨慎型 普通型 激进型 

速度收益系数  10% 20% 80% 

安全收益系数  70% 50% 10% 

舒适收益系数  20% 30% 10% 

 在策略组合为{TV 换道，RV2 不避让}时，TV 和 RV2 的总收益为： 

2

1 1 1 1 1 1( ) ( ) ( )TV vel saf accU f U f U f U  = + +                       (4.18) 

2

2 2 4 2 4 2 4( ) ( ) ( )RV vel saf accU f U f U f U  = + +                    (4.19) 

其中， 2

TVU 和 2

2RVU 表示主车 TV 做出换道决策、目标车道后车 RV2 做出不避让决

策时，TV 的总收益和 RV2 的总收益。 

在策略组合为{TV 不换道，RV2 避让}时，TV 和 RV2 的总收益为： 

3

1 2 1 2 1 2( ) ( ) ( )TV vel saf accU f U f U f U  = + +                     (4.20) 

3

2 2 3 2 3 2 3( ) ( ) ( )RV vel saf accU f U f U f U  = + +                   (4.21) 

其中， 3

TVU 和 3

2RVU 表示主车 TV 做出不换道决策、目标车道后车 RV2 做出避让决

策时，TV 的总收益和 RV2 的总收益。 

在策略组合为{TV 不换道，RV2 不避让}时，TV 和 RV2 的总收益为： 

3

1 2 1 2 1 2( ) ( ) ( )TV vel saf accU f U f U f U  = + +                     (4.22) 

2

2 2 4 2 4 2 4( ) ( ) ( )RV vel saf accU f U f U f U  = + +                  (4.23) 

其中， 4

TVU 和 4

2RVU 表示主车 TV 做出不换道决策、目标车道后车 RV2 做出不避让

决策时，TV 的总收益和 RV2 的总收益，通过计算上述不同策略下主车 TV 和目标车

道后车 RV2 的收益可得到博弈收益矩阵。 
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4.3 车辆换道博弈模型推理 

4.3.1 逆向归纳法 

由 Stackelbert博弈的性质可知，其是一种动态博弈，故可以用逆向归纳法进行求

解。逆向归纳法最早起源于泽梅罗(1913) 针对国际象棋有最优策略解的证明，后来

才慢慢被广泛运用于博弈论中[102]。在一个完整完美的动态博弈中，先采取行动的理

性博弈者在选择前一阶段的策略时，必然会考虑后一阶段的博弈者会如何选择后一

阶段的策略。在后期玩家选择的策略确定之后，前一阶段的玩家选择策略就相对容

易了。逆向归纳法的逻辑基础是:在动态博弈中先行动的参与者在选择前一阶段的行

为时，必然会考虑后阶段行动的参与者的行为选择。只有最后阶段的参与者才可以

直接做出选择，不受其他参与者的限制。当后阶段参与者的选择确定后，前一阶段

参与者的行为也很容易确定，逆向归纳排除了不可信的威胁或承诺。 

 

图 4.6 逆向归纳法案例 

一个简单的例子如上图 4.6 逆向归纳法案例所示，局中人为 A 和 B，A 是先决策

者，B 是后决策者，其求解过程如下： 

（1） 若 B 在右侧，B 将选择进（0，3），因为此时（0，3）>（0,0）; 

（2） 若 B 在左侧，B 将选择退（3，0），因为此时（3，0）>(-1,-1); 

（3） 在 B 的选择中 A 最大收益的选择是进，因为此时（3，0）>（0，3）；故此模

型的纳什均衡为（进，退），均衡收益为（3，0）。 

4.3.2 主从换道博弈推演 
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在换道决策过程中，主车先产生换道意图，然后打开转向灯传递换道意图给目

标车道后车，通过预测目标车道后车的最优策略去寻找主车的最优策略，从而决定

是否换道，故 Stackelberg 博弈模型本质是一个双层优化问题，它可以表示为： 

* *

2argmax[ ( , ( ))]TV TV TV RV TVU   =                          (4.24) 

 * *

2 2 2argmax[ ( , )]RV RV TV RVU  =                             (4.25) 

其中, TV {换道，不换道}为主车 TV的策略， TVU 是主车 TV的收益函数， *

TV 是

局中人 TV 的最优策略， SV {避让，不避让}是目标车道后车 RV2 的策略， 2RVU 是

目标车道后车 RV2 的收益函数， *

2RV 是局中人 RV2 的最优策略。 

 

图 4.7 博弈树 

建立如上图所示的图 4.7 博弈树，其末尾数值为主车 TV 和目标车道后车 RV2 采

取各自策略后的总收益。图中 TV 首先会开启转向灯向目标车道后车传递换道意图，

此时目标车道后车 RV2 会选择避让或者不避让，若其选择避让，目标车道后车 RV2

的预期收益为-0.44，主车 TV 的预期收益为 0.4；若其选择不避让，目标车道后车

RV2 的预期收益为-0.72，主车的预期收益为-0.31；显然目标车道后车 RV2 自己从本

身利益出发会选避让，因为-0.44 大于-0.72，其收益更高。由上述分析可知目标车道

后车 RV2的最优策略为避让，此时主车 TV有换道和不换道两者策略，此时主车选择

换道的收益为 0.4，选择不换道的收益为-0.20，收益主车 TV 选择换道的收益更高，

故最终选择的策略为主车 TV 换道目标车道后车 RV2 减速避让，{换道，避让}为



北京理工大学硕士学位论文 

54 

 

Stackelberg 的均衡。 

4.4 本章小结 

由于车辆换道过程中与目标车道后车存在交互行为，故本章基于本车和目标车

道后车建立了 Stackelberg 换道博弈模型。首先简要介绍了博弈的基本要素和其类型，

确定博弈的类型、局中人的个数和策略的内容。通过判断两车到达潜在碰撞点的时

间差是否大于安全时间阈值，若大于则主车与目标车道后车不存在交互行为，反之

存在交互博弈行为。然后通过对车辆换道特性进行分析确定总收益函数由速度收益、

安全收益、舒适性收益组成，通过计算各种策略下的总收益构建决策树并利用逆向

归纳法寻找最优策略。 
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第5章  基于微分平坦的分层轨迹规划 

目前运动规划问题普遍都是把三维的轨迹规划(横向-纵向-时间)解耦为两个二

维规划问题，但 McNaughton 等[103]认为解耦会损失车辆运动的最优性，因为在横纵向

轨迹设计时并没有考虑其耦合性；为提升规划算法的最优性且能满足更多的运动学

约束，本文提出一种分层轨迹规划算法，在底层构建以贝塞尔曲线节点为自变量，

且满足避障、速度、加速度约束等凸约束的二次规划问题，保证算法的概率完备性

和行车安全性。利用车辆运动学的微分平坦特性，构建以稳定性、乘坐舒适性、高

效性和安全性等指标的目标函数，利用粒子群优化（PSO）算法优化终止车速和行驶

时间，得到一条满足车辆多目标约束的行驶轨迹。 

5.1 基于贝塞尔曲线的局部路径规划 

5.1.1 贝塞尔曲线 

贝塞尔曲线(Bézier curve)是应用于二维图形应用程序的数学曲线[104]。曲线定义：

起始点、终止点（也称锚点）、控制点。通过调整控制点，贝塞尔曲线的形状会发生

变化。故基于贝塞尔曲线进行避障规划是通过寻找贝塞尔曲线的控制点的最优位置

来实现避障。已知贝塞尔曲线方程为： 

0 0 1 1

0

( ) ( ) ( ) ( ) ( )
n

n n i i

j j n j n j n j n

i

B t c b t c b t c b t c b t
=

= + + + =                  (5.1) 

( ) (1 )i i n i

n

n
b t t t

i

− 
= − 
 

                           (5.2) 

式中 i

jc 为第 j段曲线的第 i 个节点坐标，n 为节点个数。 

从上述的推导可以得出贝塞尔曲线本质是关于变量 t 的多项式，由于形状由每个

节点的坐标决定，故具有如下性质： 

(1)、它总是从第一个控制点开始，到最后一个控制点结束，不经过中间其它节

点，但是曲线始终在所有节点连接构成的凸多边形内。 

(2)、曲线每个节点的导数由曲线节点的线性组合求得，即曲线的导数同样也可

以被约束在凸多边形内。 

(3)、曲线自变量 t 的区间为[0,1]。 

5.1.2 避障轨迹规划 
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根据贝塞尔曲线形状可知，当给定控制点范围约束时，可以保证整条曲线都位

于此安全范围内，利用此性质大大减少了约束的数量，提升了求解效率。如图 5.1 

避障轨迹规划，图中点划线为两车道的中心线，黑色虚线为车道分割线，以两段七

阶贝塞尔曲线构造换道曲线，换道起点和换道终点都位于车道中心线上，由于贝塞

尔曲线时间的取值在[0,1]内，故需要对曲线进行归一化，则实际换道曲线函数为[105]： 

1 1
0

1

2 2
0

2

( ), [0,1]

( )

( ), [0,1]

n i i

n
i

n i i

n
i

t
s c b t

s
f t

t
s c b t

s







=

=




= 
 





                              (5.3) 

式中, 1 2s s、 为每一段贝塞尔曲线对应的实际时间。 

 

图 5.1 避障轨迹规划 

由于贝塞尔曲线的安全走廊存在一定范围内的重叠，使得优化问题具有更高的

自由度，对每一段贝塞尔曲线时间分配进行了隐性调节。把三维空间中的轨迹规划

问题分解为两个二维空间中的贝塞尔曲线优化问题，建立以曲线的三次导数的平方

和为目标函数，寻找平滑性好的贝塞尔曲线： 
2 2

4 4

1 2

1 2

4 40 0

2 2
4 4

1 1
5 5

1 24 40 0

( ( )) ( ( ))

( ( )) ( ( ))

i i

i i
T T

i i

i i

t t
d s c b d s c b

s s
J d d
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d c b d c b
s d s d

d d

 

 

 

 
 

 

− −

   
   

= +   
   
   
   

   
= +      

   

 
 

 
 

          (5.4) 

式中仿真时间 [0,1]  ,节点编号 {0,1,2,3,4,5,6,7}i , { , }x y 代表横向和纵向

两个方位， {1,2}j 代表两段贝塞尔曲线。 

设节点的第 l阶导数为： 
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, 1, 1 1,!
( ), 1

( )!

l i l i l i

j j j

n
a a a l

n l
  

− + −= − 
−

                                (5.5) 

式中 0,i i

j uja c = ， n为每段曲线的节点个数，则起始点和终止点的边界约束为： 

,1 (1 ) ,1

1 1 1

l l la s d 

− = ， , (1 ) ,

2 2 2

l n l l na s d 

− =                                  (5.6) 

式中 {0,1,2}l 代表位置、速度和加速度约束， ,1 ,

1 2

l l nd d 、 分表代表第一段曲线的

起始条件和第二段曲线的终止条件。 

由于轨迹是由两段曲线拼接而成，故需要设置连续性约束： 

, 1 ,1 1 0, 0,

1 1 ,2 2 1 1 2 2, ,l n l l l i i i ia s a s a c a c     

− −= = =                            (5.7) 

从上式可知通过保证第一段曲线末尾节点与第二段曲线起始节点的初始位置、

速度和加速度相等来保证连续性约束。 

为保证行车安全行，避免与障碍物发生碰撞，需要添加边界约束： 

, 1,2,...,i

j j jc i n   − +  =                                  (5.8) 

式中限制了两段曲线上所有阶段的取值范围， ,j j  − + 边界值的大小由安全走廊

决定。 

实际车辆行驶过程中受到运动学约束，故需要对横纵方向上的速度、加速度进

行约束： 

1( )i i

j jv n c c v   

− − + −                                         (5.9) 

1 2( 1) ( 2 ) /i i i

j j j ja n n c c c s a    

− − − + − − +                        (5.10) 

式中v v a a   

− + − +、 、 、 由无人驾驶车辆动力学决定。 

由于目标函数是一个二次型，且约束条件都是凸的，所以上述贝塞尔曲线优化

问题是一个凸二次规划问题，求解效率极高。但是此问题的求解需要给定确切的行

驶时间和末端车速，是一个局部条件下的最优问题，为了使求得的轨迹全局最优，

下面利用粒子群算法对对参数进行优化，同时在适应度函数中加入乘坐舒适性和行

车稳定性等度量函数。 

5.2 车辆运动学模型的平坦输出 

5.2.1 微分平坦定理 
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微分平坦最早是由法国人 Martin[105]提出的优化微分代数的概念，之后得到了迅

速发展并慢慢引入到控制领域。近年来微分平坦定理在无人机和无人车运动规划中

得到的广泛的关注。其主要优点是能将非线性系统的微分约束映射为平滑集合约束，

有效减少了优化空间的维数。Cong[106]等利用车辆系统的平坦输出建立运动学和稳定

性约束来弥补基本质点模型规划算法的不足；Wang[107]等利用车辆动力学模型的微分

平坦特性去线性化车辆非线性动力学模型，大大提高了预测控制精度；Guo 等[108]基

于微分平坦定理提出了一种具有轮胎稳定性控制的最大功率控制器。 

对于一个非线性系统： 

( , ), ,
( )

( ),

n m

m

x F x u x u
f x

y g x y

=  
= 

= 
               (5.11) 

如果能找到如下形式的输出量： 

( )( , , ,..., ),i mz h x u u u z=                    (5.12) 

使得系统的状态量以及输入量都能用输出量 z 和 z 的有限阶导数表示： 

( )

( )

( , ,..., )

( , ,..., )

i

i

x x z z z

u u z z z

=


=
                     (5.13) 

则称系统是微分平坦系统，其中 z 为平坦系统的平坦输出。由于平坦输出与状

态变量和控制输入之间是一一对应的关系，所以微分平坦的运动特征可以由平坦输

出唯一决定。这样就把一个高维状态空间映射到了平坦空间，降低了规划空间维度，

如图 5.2状态空间与平坦空间的映射关系所示. 

 

 图 5.2 状态空间与平坦空间的映射关系 
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5.2.2 车辆运动学 

为了把利用汽车的非完整性运动学约束对得到的贝塞尔曲线进行进一步优化，

建立如图 5.3 车辆运动学模型，其中前轮为转向轮，后轮为驱动轮。以后轴线中心

为参考点建立坐标系，则车体的位姿向量为  , , ,q x y  = ，其中 ( , )x y 为车体位置坐

标；为车辆偏航角， 为前轮转角， l 为前后轮轴距。则车辆的非完整性约束为： 

sin( ) cos( ) 0

sin cos 0

f fx y

x y

   

 

+ − + =


− =
                  (5.14) 

 

图 5.3 车辆运动学模型 

上述等式表示前后轴无侧向滑动，其中 ( , )f fx y 为前轮中心坐标，满足如下几何

关: 

cos

sin

f

f

x x l

y y l





= +


= +
                         (5.15) 

根据阿克曼转角的几何关系可以得到转弯半径： 

1

tan

l
R

 
= =                           (5.16) 

以车辆状态向量作为状态量，车速 v和横摆角速度为模型输入量建立运动学模
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型： 

cos 0

sin 0

0 1

x
v

y








   
    

=     
       

                      (5.17) 

已知横纵向的贝塞尔曲线表达式为: 

0 1 2 2 7 7( ) ...P t P P t P t P t    = + + + +                     (5.18) 

1

2

3

4

5

6

7

1 0 0 0 0 0 0

6 6 0 0 0 0 0

15 30 15 0 0 0 0

20 60 60 20 0 0 0

15 60 90 60 15 0 0

6 30 60 60 30 6 0

1 6 15 20 15 6 1

c

c

c

P c

c

c

c















  
  

−   
  −
  

= − −   
  − −
  

− − −   
  − − −   

              (5.19) 

式中 { , }x y ， 1 7...c c  为七阶贝塞尔曲线的七个节点。则车辆 ,x y坐标都是关于

时间 t 的七阶多项式: 

2 3 4 5 6 7

0 1 2 3 4 5 6 7

2 3 4 5 6 7

0 1 2 3 4 5 6 7

x t t t t t t t

y t t t t t t t

       

       

= + + + + + + +


= + + + + + + +
            (5.20) 

式中 、 矩阵由横纵向贝塞尔曲线节点 x yc c、 确定。 

由运动学模型可得： 

sin

cos

x v

y v





=


=
                         (5.21) 

进一步推导可得： 

2 2v x y= +                          (5.22) 

sin cos

cos sin

x v v

y v v

  

  

= +


= −
                      (5.23) 

由公式(5.21)和(5.23)可得横摆角速度: 

2 2

sin ( cos sin ) cos ( sin cos )
tan

v v v v v v x y y x v

v v l

       
 

− − + −
= = =                                

(5.24) 

从而可以得到前轮转角表达式： 
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3

( )
arctan( )

l x y y x

v


−
=                      (5.25) 

5.3 基于粒子群的二次优化算法 

5.3.1 粒子群优化算法 

粒子群优化算法最早启发于鸟群通过信息共享使种群找到最优的觅食点这一行

为，最早由美国心理学家 JamesKennedy 和电气工程师 RussellEberhart 于 1995 年提出

[109]，主要应用在目标函数没有梯度，是黑匣子的场景，此时没有梯度，所以没法运

用数学优化，如神经网络超参数优化、神经网络结构优化、多目标优化； 

利用鸟群觅食通俗化解释粒子群算法如下表 5.1 所示，每一只鸟对应的是粒子群

中的每一个粒子，每一只鸟在森林中飞行寻找食物的过程为粒子在搜索空间中搜索

的过程，鸟的飞行速度可以根据粒子在一段时间内的历史最优位置和种群历史最优

位置动态调整，其鸟儿每次停留的一个位置对应的是粒子群算法的一个解，当有一

只鸟儿在一个位置寻找到的食物量最多时，这个位置就是优化问题的全局最优解；

鸟儿在飞行的过程中会不断迭代，更新位置和速度，寻到满足收敛条件的全局最优

解即为所求目标。 

表 5.1 鸟群觅食对比粒子群算法 

鸟群觅食 粒子群算法 

鸟 粒子 

森林 求解空间 

食物的量 目标函数值（适应值） 

每只鸟所在位置 空间中的一个解（粒子位置） 

食物量最多的位置 全局最优解 

假设在 D 维空间中，有 N 个粒子组成的一个粒子群，他们的位置和速度的维度

都是D维，粒子的位置用 1 2, , , Nx x x 来表示，粒子的速度用 1 2, , Nv v v 来表示，给定粒

子的位置限制 min max[ , ], 1,2,....ix x x i N = ，粒子的速度限制 min max[ , ], 1,2,....iv v v i N = ，

每个粒子的初始位置和速度都是在给定的上下限之间随机生成的，则第 j个粒子的位

置表示为 1 2( , , , )j j j jDx x x x=  ，速度记为 1 2( , , , )j j j jDv v v v=  ；然后根据适应度函数计

算每一个粒子个体的适应度函数值对每一个个体的局部最优和全局最优进行更新。 

第 j个粒子找到的具有最佳适应度值的位置称为个体历史最优位置记为： 
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1 2( , , , ), 1,2, ,bestj bestj bestj bestjDp p p p j N=  =                     (5.26) 

全部粒子中的最优位置称为全局历史最优位置记为： 

1 2( , , , )best best best bestDg g p g=                                    (5.27) 

        则可以根据如下公式来更新第 j个例子的第 i个分量的位置和速度： 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))ji ji bestji ji best jiv t v t c r p t x t c r g t x t+ = + − + −          (5.28) 

( 1) ( ) ( 1)ji ji jix t x t v t+ = + +                                   (5.29) 

其中，t 表示当前群体的迭代次数， 1c 为粒子的自我学习因子，调节粒子移动步

长受到自己本身影响的因数大小， 2c 为粒子群体的学习因子，调节粒子移动步长受

到群体影响的因素大小，为粒子惯性权重，其大小非负，体现粒子继承上一刻自

身速度的能力； 1r 和 2r 为两个相互独立的随机数，都服从 0 到 1 的均匀分布，当迭代

次数达到一定量级或种群最优位置收敛时，停止迭代，寻到的位置为原始问题的最

优解。 

 

 图 5.4 粒子群算法矢量图 

 如上图 5.4粒子群算法矢量图可知，粒子群算法的本质就是利用自身惯性和自身

历史最优，以及整个种群最优来更新自己进化方向，从而找到最优解。 

5.3.2 二次优化算法 

上述贝塞尔曲线优化问题是基于质点模型的凸优化，但对于车辆这样一个强非

线性系统，应该将车辆的运动学和输入输出状态约束考虑在内，保证规划轨迹具有
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很高的可执行性，否则会极大程度增加轨迹跟踪的难度。且基于贝塞尔曲线的轨迹

规划问题只满足避障和部分运动学等硬约束和部分平顺性约束，因为目标函数属于

车辆平顺性的子集。故为了规划出一条安全行、高效性、舒适性、可执行性等综合

性能最优的贝塞尔曲线，本文利用微分平坦输出设计满足上述条件的目标函数，利

用粒子群优化算法求解非凸问题完成对行驶时间 1 2s s、 和最终车速 tv 的在线优化，最

终得到一条综合性能最优的行驶轨迹，具体流程如图 5.5 二次优化流程。 

首先设置粒子群内的粒子数 pn ，由此可得粒子群矩阵如下： 

1 2( , ,..., )
pnX X X X=                                          (5.30) 

种群中每一个粒子包含三个参数： 

1 2( , , ), 1,2,...,i t pX s s v i n= =                               (5.31) 

考虑粒子群内所有粒子在所有迭代周期内的全局极值、每个粒子维度下的速度

和个体极值： 

1 2 3

1 2 3

1 2 3

( , , )

( , , ) , 1,2,...,

( , , )

T

b b b b

T

i i i i p

T

ib i i i

g g g g

v v v v i n

P P P P

=


= =
 =

                         (5.32) 

在迭代过程中粒子会根据自身粒子的惯性，和与自身极值 iP 和全局极值 bg 之间

的距离来更新自身的速度 iv 和位置 iP ： 

1

1 1 2 2( ) ( )k k k k k k

ij ij ib ij bj ijv v c r P X c r g X+ = + − + −                  (5.33) 

1 1k k k

ij ij ijX X v+ += +                                      (5.34) 

式中 1,2,..., , 1,2,3pi n j= = ， k 为当前迭代次数，为惯性权重因子， 1 2,c c 为自

身权重因子和种群权重因子， 1 2r r、 分别为两个大小在[0,1]之间的随机正整数。 

从期望车速、轨迹安全行、高效性、舒适性、可执行性等各项性能出发设计自

适应函数 tF 。车辆换道到另一车道时，希望规划得到的速度尽量接近期望车速 desv ，

故还需要添加期望车速评价指标： 

2

0 0 ( )t t desF w v v= −                                    （5.35) 

式中， tv 代表贝塞尔曲线末端车速， desv 代表主车期望车速。 

考虑行车安全行，可由贝塞尔曲线与障碍物间的曼哈顿距离评价： 

1 1 ( , )tF dist obs Bezier=                               (5.36) 
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式中obs 代表周边障碍物的全局坐标。 

 

图 5.5 二次优化流程 

乘坐舒适性最直接的评价指标是前轮转角及其变化率： 

2 1
2 2

2 2 3
0

1

2 1
2 2

2 330
1

2 2 3

( )

( )
    ( (arctan( )) )

     ( , , , , ,..., , , ,...), {1,2}

t j j

j

j j j j

j

j j

t j j j j j j

F dt

l x y y x
dt

v

F x x x y y y j

   

  

 

=

=

= +

−
= +

= 



           (5.37) 

由于轨迹规划与控制模块分离在不同的层之中，这导致两者的目标侧重不是完

全切合，一般假设当轨迹满足一定的约束条件时，底层控制能够以有界的误差跟踪

轨迹。然而由于车辆模型的误差，可能会使得规划层规划出不符合动力学约束的轨

迹，一般用最大曲率 1

min 0.1m −= 进行限制[110]，为加快粒子群算法收敛速度，运用

sigmoid 函数[111],设计可执性评价指标： 

( )( )4 min

4 min
3

2 2 2

3

4

( )

4

3 4

1 1

1

1

     = ( , , , ,..., , , ,...), {1,2})

j j j j

j j

t

x y x y

x y

t j j j j j j

F
e

e

F x x x y y y j

  

 






− −   
  −
  − −
  
  +  

= =
+

+



              (5.38) 
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车辆行驶稳定性不仅与车辆自身的状态有关，还一定程度上取决于路面附着条

件，由于基于下层规划器是一个凸优化过程，没有考虑横纵向耦合的动力学约束，

故需要设计满足行驶稳定性的动力学评价指标，根据文献[112]可知，需要对车辆的横

摆角速度和质心侧偏角进行限制： 

max

2

max 2

0.85

10 7
(40 / )

y g

x

v

m s


 

 


 =


  = −


                              (5.39) 

式中 y 是轮胎的横向附着系数，对于干燥的路面，一般 y 取 1[113] 。 

同理利用 sigmoid 函数设计质心侧偏角和横摆角速度评价指标： 

( )( )5 max

5
2 2

4
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            (5.41) 

在实际的结构化道路上行驶时，在保证智能汽车乘员舒适性前提下，换道避障

时间越短越好，这样能够在宏观层面上提高交通效率，设计避障效率指标： 

6 7 1 8 2tF s s = +                                          (5.42) 

故粒子自适应函数为： 

0 1 2 6
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...

    = ( , , , , , , , ,..., , , ,...)

t t t t t

t i des j j j j j j

F F F F F

F s s v obs x x x y y y
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          (5.43) 

式中 {1,2,...,8}i 为贝塞尔曲线的粒子数，式(5.35)至(4.52)中，
1 2 8, ,...,   为

指标权重系数，根据不同的驾驶风格进行选取。 

5.4 轨迹规划仿真实验 

换道避障是自动驾驶汽车实现结构化道路上无人驾驶的基础技术。而双移线避

障又可以看作单移线的叠加和改进，因此在考虑周围静态和动态车辆的环境下，如

何规划出一条综合性能最优的行驶轨迹就成了结构化道路下局部路径规划技术的关
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键。如图 5.6 换道避障示意图，主车 TV 以 tvv =36km/h 的车速向前行驶，与前方障碍

车辆 FV1 相距 1xl =25m 时发现前方车辆以 18 km/h 的车速向前行驶，此时刻车辆做出

换道避障决策，目标车道后车 RV2 车速为 2rvv =54km/h，相距 2xl =35m，目标车道前车

FV2 车速为 2fvv =54km/h，相距 3xl =40m。本文主车采用普通型驾驶风格进行轨迹规划，

根据第 2节可知安全走廊重叠区域的作用是对行驶时间和乘坐舒适性的隐性调节，因

此安全走廊的宽度取值一般比车道有效宽度略大一些，一般取值为 1.25D（D 为车道

有效宽度），故安全走廊的宽度边界为： 
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                                    （5.44） 

式中
y1 y1 y2 y2, , ,   − + − + 分别表示安全走廊横向方向上的四个边界。 

 

 图 5.6 换道避障示意图 

由于算法有性调节优化参数功能，所以安全边界按照车辆以最小能耗，即原始

车速行驶进行计算。根据文献[114]取安全距离 S ,不同的驾驶风格取值不同,谨慎型、

普通型和激进型分别取 15m、10m和 5m,则在第一段安全走廊行驶的最大时间为： 
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−
                                             （5.45） 

式中 tvv 为主车 TV 的速度， 1fvv 为主车前车 FV1 的速度。 

第一段和第二段安全走廊的消耗最大总时间为： 
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当主车车速小于目标车道前车车速时， maxs 计算得到的值小于 0，此时 maxs 取统

计经验值 *

maxs 。 

由(5.45)和(5.46)式可得纵向安全走廊边界为： 
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式中 1 1 2 2, , ,x x x x   − + − + 分别表示安全走廊纵向方向上的四个边界， *

1s 为主车离开本

车到统计经验时间值[80]，防止计算得到的 *

1s 值过大导致可行域过小， 2rvv 为目标车道

后车车速。 

取粒子数 5pn = ，粒子群初始化参数为： 

1

2
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36 7.2

i

i

ti

s rand

s rand rand i

v rand
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 = +

        （5.48） 

式中 1is 、 1is 分别表示第 i 个粒子对应的第一段和第二段贝塞尔曲线对应的时间，

tiv 为第 i个粒子对应的末端车速。 

在 matlab2020a 中进行轨迹规划仿真，并搭建基于模型预测控制的 Simulink 模

型和车辆动力学仿真软件 Carsim 进行轨迹跟踪仿真具体流程可见第六章，本节只对

规划算法进行仿真；对规划得到的轨迹和轨迹跟踪得到的仿真轨迹性能进行对比验

证，同时增加了与文献[115]提出的双五次多项式轨迹的对比分析。换道仿真的相关参

数如下表 5.2 仿真车辆参数所示： 

表 5.2 仿真车辆参数 

 符号 参数 大小 

m  汽车质量 1217（kg） 

zI  转动惯量 1020（kg m2
） 

fL  质心到前轴距离 1.165(m) 

rL  质心到后轴距离 1.265(m) 

fC  前轮转向刚度 40000(N/rad) 

rC  后轮转向刚度 40000(N/rad） 

D  车道有效宽度 3.6(m) 

基于微分平坦分层轨迹规划仿真结果图 5.7 基于微分平坦的分层轨迹规划仿真过

程所示，图 5.7(a)为 PSO 算法寻找综合性能最优的避障换道轨迹过程中产生的轨迹

曲线簇。由图 5.7(b)可知 PSO 算法收敛速度很快，种群最佳适应度经过 7 次迭代后

到达收敛，且此算法基本上可以保证在 10 次迭代以内收敛，因为此算法在基于贝塞

尔曲线的凸优化中加入了隐性调节约束，即安全走廊的重叠区域，隐性调节了两段

贝塞尔连接点的位置使求解出来的轨迹更加平滑，故加速了 PSO算法的收敛速度。当

粒子群适应度值收敛时得到综合性能最优换道轨迹如图 5.7(c)所示，图中蓝色曲线
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为第一段贝塞尔曲线，红色曲线为第二段贝塞尔曲线，图中绿色框架为根据周围环

境建立起来的安全走廊约束，两段贝塞尔曲线连接点的坐标为(27.57m,3.85 m)，换

道轨迹的终点坐标为(52.19 m,5.4 m)，每段曲线对应的行驶时间分别为 t1=2.45 s

和 t2=1.76 s。 

 

(a)迭代曲线簇                           (b)PSO算法收敛曲线 

 

(c)最优换道避障轨迹 

 图 5.7 基于微分平坦的分层轨迹规划仿真过程 

图 5.8为 5次多项式采样算法的仿真过程，首先在横向、纵向和时间维度上进行

均匀采样，然后在确定的边界条件上通过求解方程组得到每一条横纵向五次多项式

表达式，把所有五次多项式在三维空间中画出来如图（a）三维空间轨迹采样所示，

若不考虑时间维度，把其投影到横纵向坐标系中得到图（b）二维空间采样轨迹簇，
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为验证所提规划算法的性能，选取最优 5次多项式的仿真时间为 t=4.21 s，终止车速

为 v=54 km/h，终止坐标为(52.19 m,5.4 m)。 

 

(a)三维空间轨迹采样                                        (b)二维空间采样簇 

 图 5.8 五次多项式采样过程 

 

（a）贝塞尔曲线                                                               （b）五次多项式 

图 5.9 换道轨迹跟踪仿真图 

为对比两种规划算法规划得到的换道轨迹的行驶性能，本节采用基于模型预测

控制的轨迹跟踪算法对两者换道轨迹进行跟踪，通过对比轨迹跟踪过程中车辆的状

态量和控制量曲线去对比两种规划算法的性能；如图 5.9 换道轨迹跟踪仿真图所示，

图（a）为对两段贝塞尔曲线轨迹跟踪图，总体而言跟踪误差较小，最大跟踪跟踪误

差出现在车辆偏航角最大时刻为 0.061m，当达到另外一个车道时无稳态误差；图（b）

为对五次多项式曲线跟踪图，总体而言跟踪误差也较小，最大跟踪误差为 0.071m，
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比贝塞尔曲线略大，无稳态误差，总体而言，两种换道轨迹的平顺性都较好，控制

层能稳定跟踪。 

 

（a）前轮转角                                                （b）横摆角速度 

 

（c）质心侧偏角                                               （d）侧向加速度 

图 5.10 车辆换道性能参数 

基于二次优化的目标函数中考虑车辆运动状态参数，故需要对比车辆跟踪贝塞

尔曲线和五次多项式换道轨迹的性能参数，如图 5.10 车辆换道性能参数中图（a）所

示为两者换道过程中对应的前轮转角曲线，蓝色曲线为贝塞尔曲线对应的前轮转角

曲线，曲线整体平滑，最大值为-1.19°，红色曲线为五次多项式对应的前轮转角曲

线，其最大值为 1.46°，其幅值相对于贝塞尔曲线更大；图（b）为两者换道过程中

对应的横摆角速度曲线，蓝色曲线为贝塞尔对应的横摆角速度曲线，曲线整体平滑，

曲线变化趋势符合车辆换道过程中的运动趋势，最大值为 6.79°/s，红色曲线为五次

多项式对应的横摆角速度曲线，曲线整体平滑且最大值为 7.46°/s，比贝塞尔曲线的
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最大值略大一些，两者的最大值都小于车辆安全稳定行驶的阈值；图(c)为两者换道

过程中对应的质心侧偏角曲线，贝塞尔曲线对应蓝色曲线，其最大值为 2.61°，五

次多项式对应红色曲线其最大值为 4.13°，二者均小于阈值 9.01°;图（d）为两者换

道过程中对应的侧向加速度曲线，图中蓝色曲线对应贝塞尔曲线、红色曲线对应五

次多项式，两者都小于侧向加速度阈值 0.4g，具有良好的侧向安全性。综上所知，

本节提出的基于贝塞尔曲线的分层规划算法规划得到的车辆换道性能更优，在保证

安全性的同时具有更好的平滑性和可控性。 

5.5 本章小结 

本章提出一种分层轨迹规划算法，在底层构建以贝塞尔曲线节点为自变量，且

满足避障、速度、加速度等凸约束的二次规划问题，保证算法的概率完备性和行车

安全性。利用车辆运动学的微分平坦特性，构建以乘坐舒适性、行驶稳定性、运动

学约束、行车效率等指标的自适应函数，利用粒子群算法优化终止车速和行驶时间，

得到一条满足车辆运动学、乘坐舒适性和稳定性的行驶轨迹，并在 matlab 软件中进

行了仿真实验，得到了最终收敛的换道轨迹曲线。 
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第6章  主动换道仿真实验 

智能车高速辅助驾驶系统包含驾驶意图产生、目标车道后车驾驶风格识别、主

车与目标车道后车博弈决策、主车换道轨迹规划和主车轨迹跟踪控制等流程，为验

证本文所提出的高速主动换道决策规划算法的可行性，本文基于 Simulink 和 Carsim

软件搭建高速换道仿真平台对换道行为的可行性、安全性和可控性进行验证。 

6.1 主动换道决策规划一体化仿真流程 

基于换道意图识别的主动换道决策规划一体化算法流程如图 6.1 所示，首先智能

车根据摄像头、激光雷达和毫米波雷达等设备感知外界信息，把主车信息和周围车

辆信息输入到通过 GA-DBN 模型训练得到的换道意图分类模型中，根据其结果确定

是否开始换道流程。 

 

 图 6.1 主动换道决策规划一体化算法仿真流程 
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若模型分类结果为不换道，则主车继续直行，若模型分类结果为换道则主车将

换道意图指令发送到博弈决策模块，此时主车会打开转向灯传递换道意图给目标车

道后车，感知模块会观测目标车道后车反应识别出其驾驶风格将其传递给博弈决策

模块和规划模块，这时规划模块会先根据目标车道驾驶风格划分安全行驶空间，规

划出换道轨迹，然后规划模块再将换道轨迹传递给博弈决策模块，博弈决策模块再

根据目标车道后车的驾驶风格和主车换道轨迹计算出主车和目标车道后车选择各种

策略时的收益矩阵，然后再利用逆向归纳法对博弈模型进行推演得到主车和目标车

道后车的最优策略，若主车策略是换道，则主车会按照规划层规划得到的换道轨迹

进行行驶，若主车的策略是不换道，则此时规划层需要进行速度规划减速跟驰前车。 

6.2 主动换道决策规划仿真模型 

Carsim 软件是一款由汽车系统仿真软件公司 MSC 开发的针对车辆动力学的仿真

软件，它可以模拟真实车辆对驾驶员和环境输入的响应，广泛运用于预测和仿真整

车的操作稳定性、平顺性、动力学、制动性、积极性和现代汽车控制系统的开发中。

Carsim 不仅高度还原了车辆动力学特性，还可以对周围环境，如周围车辆、道路形

状等进行设定方便真实的呈现实验过程。同时，Carsim 提供各种软件如 Simulink、

DSpace、LabVIEW 的接口，方便进行联合仿真。如图 6.2 Carsim 界面介绍所示，其

最左侧主要用于设置车辆的基本参数和道路环境信息，中间的部分主要用于设置仿

真参数和其它软件的接口，如 simulink的接口等，最右边的部分可以查看车辆状态曲

线和视频动画。 

 

图 6.2 Carsim 界面介绍 
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目前智能车的轨迹跟踪算法主要分为两大类，第一类是基于几何模型的轨迹跟

踪算法如纯跟踪和 Stanley 算法等，这类算法只能处理低速小曲率场景，在高速上鲁

棒性较差，第二类是基于运动学模型的优化算法，如线性二次型调节器（LQR）和

模型预测控制器（MPC）等，后者由于其可以处理约束能力而广泛运用于智能车轨

迹跟踪领域[116]，本文采用 MPC 进行轨迹跟踪。 

Carsim 中的车辆模型主要包括驱动系统、转向系统、转动系统、悬架系统、轮

胎和空气动力学等模块，用户可以根据自己选择的车型对其进行修改。Carsim 车辆

参数设置完毕后，在 Simulink 中搭建模型预测控制算法和 Carsim 软件联合仿真，如

下图 6.3 Carsim 与 Simulink 联合仿真模型所示，首先我们将规划层规划得到的轨迹存

储为 mat 格式，然后在 Controller 模块中加载轨迹数据作为跟踪轨迹，模块中的

Controller 中包含模型预测控制器和状态观测器两大块，Carsim 模块接收由控制器模

块计算得到的控制量控制车辆行驶然后再输出器状态量如横向位置、纵向位置、偏

航角、横向速度、纵向速度、横向加速度、纵向加速度和质心侧偏角给观测器。 

 

 图 6.3 Carsim 与 Simulink 联合仿真模型 

 本文研究集中于两车道车辆换道，故需要在 Carsim 设置环境道路信息，如下图 

6.4 道路信息所示，道路为单向双车道，其宽度为 7m，附着系数为 0.85。同 理 需 要
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在 Carsim 软件中对周围车辆的数量、位置和车速进行设置，具体在 Miscellaneous 界

面中进行设置，如下图 6.5 周围车辆设置所示。 

 

图 6.4 道路信息 

 

图 6.5 周围车辆设置 

6.3 主动换道决策规划仿真分析 

搭建了如下图 6.6 Carsim 场景图所示的单向双车道场景，其中蓝色车辆代表主车

TV，黑色车辆代表主车在本车道上的前车 FV1，红色车辆代表目标车道后车 RV2，

主车主要与其进行博弈，绿色车辆代表目标车道前车 FV2，通过 Carsim 和 Simulink

软件联合仿真，对不同驾驶风格的目标车道后车与主车的博弈过程进行分析，做出
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各自的博弈矩阵，选取在目标车道后车不同反应下的最优决策，然后做出主车换道

过程中的参数曲线图对换道过程进行详细说明。 

 

图 6.6 Carsim 场景图 

本文主要以主车未与目标车道后车产生博弈前各自的初始意图为变量设计了三

种不同的实验去验证所提决策规划算法的合理性，如下表 6.1 三种实验场景所示，实

验一为主车选择变道后需要加速跟驰目标车道前车，而目标车道后车因为与目标车

道前车速度相同，故会选择稳定跟车；实验二为主车和目标车道后车都需要加速跟

驰目标车道前车，此时目标车道前车车速大于目标车道后车和主车的车速；实验三

为主车和目标车道后车都减速跟驰目标车道前车，此时目标车道前车车速小于目标

车道后车和主车的车速。 

表 6.1 三种实验场景 

 主车初始意图 目标车道后车初始意图 

实验一 加速 稳定跟车 

实验二 加速 加速 

实验三 减速 减速 

6.3.1 场景一 

 场景一仿真初始时刻所有车辆状态参数如下表 6.2 场景一初始参数，主车 TV 以

15m/s在本车道行驶，本车道前车 FV1 在距离主车 40m处以 15m/s的车速行驶，目标 
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车道后车 RV2 在距离主车 45m的纵向位置上以 25m/s的车速行驶，目标车道前车在

距离主车 60m的纵向位置上以 25m/s的车速行驶。 

表 6.2 场景一初始参数 

车辆 主车 主车前车 目标车道前车 目标车道后车 

符号表示 T V FV1 FV2 RV2 

纵向位置/m 0 40 60 -45 

横向位置/m 1.8 1.8 5.4 5.4 

车速/
1m s−  20 15 25 25 

当主车打开转向灯给目标车道后车传递换道意图后，此时需要感知模块根据目

标车道后车的反应识别其驾驶风格，然后计算博弈收益矩阵得到最优策略，选取目

标车道后车为保守型的驾驶风格进行决策规划，先根据第五章的公式得到主车最优

换道轨迹如图 6.7 基于微分平坦的分层轨迹规划中图（b）所示，图中蓝色曲线为第

一段贝塞尔曲线，红色曲线为第二段贝塞尔曲线，两段贝塞尔曲线连接点的坐标为

(47.9 m,3.72 m)，换道轨迹的终点坐标为(88 m,5.4 m)，每段曲线对应的行驶时间

分别为 t1=2.30 s 和 t2=1.65 s，图（a）是迭代曲线簇，将得到最优换道轨迹后将其

传入决策层，然后根据第四章公式计算得到 RV2 是谨慎型时的博弈矩阵如表 6.3  RV2

保守型博弈收益矩阵，由于-0.213 大于-0.476，故 RV2 会选择避让策略，因为此时

RV2收益大；同理因为 0.472大于-0.091，所有 TV会选择换道策略，故此博弈的均衡

为{TV 换道，RV2 避让}； 

 

（a）迭代曲线簇                          (b) 最优换道避障轨迹 

图 6.7 基于微分平坦的分层轨迹规划 
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表 6.3  RV2 保守型博弈收益矩阵 

策略 RV2 避让 RV2 不避让 

TV 换道 （0.472，-0.213） （-0.091，-0.476） 

TV 不换道 （0.098，0.400） （0.098，0.925） 

如图 6.8 Carsim 换道仿真过程所示，为更好的展现换道过程，在 Carsim 中设置

了残影功能，每一辆车都设置了 5 个残影，每两个残影的时间间隔为 0.15 s，故每一

个时刻都显示 0.75 s 的轨迹，如图（a）所示在 t 为 1.3 s 时，主车靠近车道边界线，

准备行驶到另一车道；如图（b）所示在 t 为 3s 时，主车越过车道边界行驶到目标车

道，此时与目标车道后车的间距变大，可以得出目标车道后车采取减速避让的策略，

且主车与本车道前车没有发生碰撞；如图（c）在 t 为 4.3 s 时，主车以及稳定沿着目

标车道道路中心线行驶，安全高效的完成了主动换道。 

       

(a)   t=1.05 s                                  (b) t=2.8 s                                     (c) t=4.27 s 

图 6.8 Carsim 换道仿真过程 

如图 6.9 换道决策规划结果所示，图（a）为两个博弈参与者主车和目标车道后
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车的换道轨迹示意图，蓝色曲线代表主车的换道轨迹，红色曲线代表目标车道后车

的行驶轨迹，从图中绿色曲线连接相同时间节点可知，主车换道过程中与目标车道

后车保持充裕的安全距离，没有碰撞风险，图（b）为两者在换道过程中的车速曲线，

可知当主车决定换道后，车速会逐渐增加至到与目标车道前车相等，而目标车道后

车选择避让后会先逐渐减小车速，当主车车速稳定后其会再跟驰主车，所以此时车

速会逐渐增加；图（c）为主车、本车道前车、目标车道后车和本车道前车的纵向位

置曲线，其清晰的表达了在主车换道过程中各自的纵向位置；图（d）为主车与本车

道前车、目标车道后车和目标车道前车的纵向相对距离曲线，从图中可知主车与目

标车道前车的纵向相对距离先逐渐变大然后稳定，主车与目标车道后车的纵向距离

会先逐渐变小然后再慢慢增大，因为初始时刻目标车道后车的车速大于主车车速。 

                                                                            

（a）换道轨迹                                             （b）换道车速 

     

        （c）纵向位置                                           （d）纵向相对距离 

图 6.9 换道决策规划结果 

 

t=2.8 s 

t=0 

t=0.7 s 

t=1.4 s 

t=2.1 s 

t=3.5 s 
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 上述仿真过程是针对目标车道后车为保守型的驾驶风格时的决策规划过程，当

识别得到的目标车道后车驾驶风格为普通型时，其博弈收益矩阵为表 6.4 RV2 普通型

博弈收益矩阵，当主车打开转向灯传递换道意图后，由于-0.101 大于-0.437，所以

RV2会选择不避让，在此基础上，由于 0.099大于-0.151，所以 TV会选择不换道，故

此博弈模型的均衡为{主车：不换道，目标车道后车：不避让}，同理当后车为激进

型时，模型的均衡也为{主车：不换道，目标车道后车：不避让}，因为其安全系数

比驾驶风格为普通型时更小。 

表 6.4 RV2 普通型博弈收益矩阵 

策略 RV2 避让 RV2 不避让 

TV 换道 （0.462，-0.437） （-0.151，-0.101） 

TV 不换道 （0.099，0.001） （0.099，0.849） 

6.3.2 场景二 

场景二仿真初始时刻所有车辆状态参数如下表 6.5 场景二初始参数，主车 TV 以

20m/s在本车道行驶，本车道前车 FV1 在距离主车 25m处以 15m/s的车速行驶，目标

车道后车 RV2 在距离主车 20m的纵向位置上以 20m/s的车速行驶，目标车道前车在

距离主车 30m的纵向位置上以 25m/s的车速行驶，此场景与场景一的主要差别在于主

车和目标车道后车都有加速跟驰目标车道前车的趋势。 

表 6.5 场景二初始参数 

车辆 主车 主车前车 目标车道前车 目标车道后车 

符号表示 T V FV1 FV2 RV2 

纵向位置/m 0 25 30 -20 

横向位置/m 1.8 1.8 5.4 5.4 

车速/
1m s−  20 15 25 20 

先根据第五章的公式得到主车最优换道轨迹如图 6.10 基于微分平坦的分层轨迹

规划中图（b）所示，图中蓝色曲线为第一段贝塞尔曲线，红色曲线为第二段贝塞尔

曲线，两段贝塞尔曲线连接点的坐标为(43.4 m,3.86 m)，换道轨迹的终点坐标为(78 

m,5.4 m)，每段曲线对应的行驶时间分别为 t1=2.10 s 和 t2=1.45 s；将得到最优换道

轨迹后将其传入决策层。 

根据第四章公式计算得到 RV2 是保守型的博弈收益矩阵如表 6.6 RV2保守型博弈

收益矩阵，由于-0.411 大于-0.432，故 RV2 会选择避让策略两者相差较小是因为目标
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车道后车选择不避让时能获得较大的速度收益抵消了部分风险收益；同理 0.170 大于

0.088，TV 会选择换道策略；故此博弈的均衡为{TV 换道，RV2 避让}。 

 

（a）迭代曲线簇                          (b) 最优换道避障轨迹 

图 6.10 基于微分平坦的分层轨迹规划 

表 6.6 RV2 保守型博弈收益矩阵 

策略 RV2 避让 RV2 不避让 

TV 换道 （0.170，-0.411） （-0.080，-0.432） 

TV 不换道 （0.088，0.800） （0.088，0.969） 

如图 6.11 Carsim 换道仿真过程所示，同实验一一样，也在 Carsim 中设置了残影

功能，每一辆车都设置了 5 个残影，每两个残影的时间间隔为 0.10 s，故每一个时刻

都显示 0.5 s 的轨迹，如图（a）所示在 t 为 0.99 s 时，主车靠近车道边界线，前轮转

角逐渐变大；如图（b）所示在 t为 2.56 s时，主车越过车道边界行驶到目标车道，此

时与目标车道前车在纵向位置上的距离越来越小但仍然在安全范围内；如图（c）在

t 为 3.65 s 时，主车以及稳定沿着目标车道道路中心线行驶，完成了主动换道。 

如图 6.12 换道决策规划结果所示，图（a）为主车和目标车道后车的换道轨迹曲

线，蓝色曲线代表主车的换道轨迹，红色曲线代表目标车道后车的行驶轨迹，从图

中绿色曲线连接相同时间节点可知，相对于实验一，此情况的换道轨迹更加激进，

是由于目标车道后车根据有侵略性导致的，图（b）为两者在换道过程中的车速曲线，

可知当主车决定换道后，车速会逐渐增加至到与目标车道前车相等，而目标车道后

车由于与主车的纵向距离较近而被迫减速，当两者纵向跟踪距离增大到一定范围后，

主车会慢慢加速最终稳定跟驰主车；图（c）为主车、本车道前车、目标车道后车和

本车道前车的纵向位置曲线，从图中可知主车在 t=3.6 s 时在纵向位置上超越本车道
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前车，达到高效行驶的目的；图（d）为主车与本车道前车、目标车道后车和目标车

道前车的纵向相对距离曲线，从图中可知主车与目标车道前车的纵向相对距离先逐

渐变大然后稳定。 

       

(a)    t=0.99 s                                 (b) t=2.56 s                                    (c) 3.65 s            

图 6.11 Carsim 换道仿真过程 

 
（a）换道轨迹                                             （b）换道车速 

t=0 

t=0.7 s 

t=1.4 s 

t=2.1 s 

t=2.8 s 
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           （c）纵向位置                                           （d）纵向相对距离 

图 6.12 换道决策规划结果 

当识别到目标车道后车的驾驶风格为普通型时，博弈收益矩阵如表 6.7 所示，由

于-0.047 大于-0.367，所以 RV2 会选择不避让，在此基础上，由于 0.068 大于-0.092，

所以 TV 会选择不换道，故此博弈模型的均衡为{主车：不换道，目标车道后车：不

避让}，当后车为激进型时，模型的均衡将与 RV2 为普通型的均衡一样。 

表 6.7 RV2 普通型博弈收益矩阵 

策略 RV2 避让 RV2 不避让 

TV 换道 （0.181，-0.367） （-0.092，-0.047） 

TV 不换道 （0.068，0.600） （0.068，0.953） 

6.3.3 场景三 

场景三仿真初始时刻所有车辆状态参数如表 6.8 所示，主车 TV 以 20m/s在本车

道行驶，本车道前车 FV1在距离主车 40m处以 10m/s的车速行驶，目标车道后车RV2

在距离主车 20m的纵向位置上以 20m/s的车速行驶，目标车道前车在距离主车 30m的

纵向位置上以 15m/s的车速行驶，此场景与前两个实验的主要区别是 TV 和 RV2 都存

在减速趋势，TV 换道会迫使 RV2 加大减速度。 

表 6.8 场景三初始参数 

车辆 主车 主车前车 目标车道前车 目标车道后车 

符号表示 T V FV1 FV2 RV2 

纵向位置/m 0 55 35 -20 

横向位置/m 1.8 1.8 5.4 5.4 

车速/
1m s−  20 10 15 20 
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根据场景三的初始参数建模安全走廊，然后基于第五章所提的算法做出换道贝

塞尔曲线，如图 6.13 基于微分平坦的分层轨迹规划（b）中蓝色曲线为第一段贝塞尔

曲线，红色曲线为第二段贝塞尔曲线，两段贝塞尔曲线连接点的坐标为(46.4 

m,3.82 m)，换道轨迹的终点坐标为(73 m,5.4 m)，每段曲线对应的行驶时间分别为

t1=2.50 s 和 t2=1.74 s；将得到最优换道轨迹后将其传入决策层，然后根据第四章公

式计算得到 RV2 是保守型时的博弈收益矩阵如表 6.9 RV2 保守型博弈收益矩阵，由于

-0.311大于-0.502，故 RV2会选择避让策略，因为此时 RV2收益大，在 RV2选择避让

策略的前提下，TV 可以选择换道或者不换道策略，由于 0.423 大于 0.073，所有 TV

会选择换道策略；故此博弈的均衡为{TV 换道，RV2 避让}； 

 

（a）迭代曲线簇                          (b) 最优换道避障轨迹 

图 6.13 基于微分平坦的分层轨迹规划 

表 6.9 RV2 保守型博弈收益矩阵 

策略 RV2 避让 RV2 不避让 

TV 换道 （0.423，-0.331） （0，-0.502） 

TV 不换道 （0.073，0.477） （0.073，0.898） 

如图 6.14 Carsim 换道仿真过程所示，同实验二一样，也在 Carsim 中设置了残影

功能，每一辆车都设置了 5 个残影，每两个残影的时间间隔为 0.10s，故每一个时刻

都显示 0.5s 的轨迹，如图（a）所示在 t 为 1.31s 时，主车靠近车道边界线，车身逐渐

倾斜；如图（b）所示在 t 为 2.75s 时，主车越过车道边界行驶到目标车道，此时车身

偏航角达到最大值；如图（c）在 t 为 4.31s 时，主车以稳定的车速沿着目标车道道路

中心线行驶，完成了主动换道。 

相比于前两个实验，此实验主车和目标车道后车都存在减速意图，当主车换道
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时会迫使目标车道后车牺牲舒适性收益以更大减速度减小车速；如图 6.15 换道决策

规划结果所示，图（a）为主车和目标车道后车的换道轨迹曲线，蓝色曲线代表主车

的换道轨迹，两者在主车换道过程中无碰撞风险；图（b）为两者在换道过程中的车

速曲线，可知当主车决定换道后，主车会慢慢降低车速跟驰目标车道前车，而目标

车道后车原本会缓慢降低车速跟驰目标车道前车，但当主车换道后会被强迫以较大

减速度减速来保证行驶的安全性；图（c）为主车、本车道前车、目标车道后车和本

车道前车的纵向位置曲线，从图中可知主车的车速会减速到与目标车道前车相等，

然后稳定跟驰目标车道前车；图（d）为主车与本车道前车、目标车道后车和目标车

道前车的纵向相对距离曲线，从图中可知主车与目标车道前车的纵向相对距离略微

减小然后保持稳定，主车与目标车道后车的纵向距离在缓慢增大。 

       

（a）t=1.31 s                                 (b) t=2.75 s                             (c) 4.31 s 

图 6.14 Carsim 换道仿真过程 
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（a）换道轨迹                                             （b）换道车速 

   

（c）纵向位置                                                     （d）纵向相对距离 

图 6.15 换道决策规划结果 

当识别到目标车道后车的驾驶风格为普通型时，即目标车道后车的安全性系数

降低；两车的博弈收益矩阵如表 6.10 RV2 普通型博弈收益矩阵所示，由于-0. 473 大

于-0.128，所以 RV2会选择不避让，在此基础上，由于 0.077大于 0，所以 TV会选择

不换道，此时 TV 选择换道的收益为 0 的原因是安全性收益正好抵消速度负收益和舒

适性负收益，故此博弈模型的均衡为{主车：不换道，目标车道后车：不避让}，当

后车为激进型时，目标车道后车的行为会更加激进，此时模型的均衡将与 RV2 为普

通型的均衡一样。 

表 6.10 RV2 普通型博弈收益矩阵 

策略 RV2 避让 RV2 不避让 

TV 换道 （0.367，-0.473） （0，-0.128） 

TV 不换道 （0.077，0.160） （0.077，0.872） 

t=0 

t=1.4 s 

t=0.7 s 

t=2.1 s 

t=2.8 s 

t=3.5 s 
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6.4 本章小结 

本章首先详细的介绍了主动换道决策规划一体化的仿真流程，然后搭建 Carsim

和 Simulink 联合仿真平台，在轨迹跟踪层采用模型预测控制算法，对本文提出的主

动换道决策规划算法进行了验证；设计了三种实验验证算法在主车和目标车道后车

处于不同状态时的决策规划能力，如当主车和目标车道后车都有加速、减速意图时，

主车根据识别到目标车道后车的驾驶风格做出规划轨迹，然后再根据规划的轨迹计

算出博弈收益矩阵从而推演出最优策略。 
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结论 

全文研究内容总结 

本文以高速公路上的智能车换道过程为研究对象，提出了基于L2+级别的高级辅

助驾驶主动换道决策规划一体化框架，区别于传统辅助驾驶系统需要驾驶员拨杆传

达换道意图，此框架可以根据对周围环境的实时观测自主产生换道意图，并根据与

目标车道后车博弈结果做出合理的换道决策，然后基于微分平坦的分层轨迹规划算

法规划出一条安全、舒适、高效的行驶轨迹完成主动换道。本文的主要研究内容如

下： 

（1）从驾驶员的驾驶风格、换道时间、换道空间和车辆行驶状态等角度出发研

究了驾驶员产生换道意图的内在机理，并以此为基础将车辆换道行为划分为自由换

道和强制换道，前者主要是驾驶员主观意图决定是否换道，后者则是因为道路结构

导致的被迫换道，在确定自由换道为本文研究对象后将其划分为决策阶段、执行阶

段和调整阶段三部分；当驾驶员产生换道意图后会进入决策阶段，经过与目标车道

后车进行博弈后会做出最终决策，此时会进入执行阶段完成从本车道到目标车道的

行驶，再对车速和偏航角进行微调使主车稳定行驶；最后分析了影响换道行为的四

大因数为后续研究打下铺垫。 

（2）针对驾驶员换道意图多参数、非线性强的特点，提出了一种基于数据驱动

的换道意图生成方法。首先利用小波阈值算法对美国高速公路数据集 NGSIM 进行去

噪处理，减弱摄像头白噪声对数据的影响；然后基于车辆换道特性确定数据集中换

道轨迹的起点，再根据意图表征时窗确定换道意图产生起点，并提取此时刻主车和

周围车辆的数据特征将其输入到深度置信网络中进行学习达到对换道意图实时分类

的效果，由于深度置信网络的超参数较多，故本文利用遗传算法对其进行优化来提

高模型精度；经过测试集验证，模型分类的准确度到达了 82.34%，并且高于传统的

svm、决策树等分类算法，可以对换道意图进行准确判断。 

（3）针对主车换道过程中与他车存在交互博弈等行为，提出了基于 Stackelberg

博弈模型的换道决策算法。首先根据车辆换道过程的特性确定主车换道过程中主要

与目标车道后车进行博弈，其中主车为领导者，目标车道后车为跟随者，两者之间

存在主从关系；然后根据规划层预先规划得到的主车轨迹计算其与目标车道后车的

潜在碰撞点的位置，并根据两者到达潜在碰撞点的时间差是否大于安全时间阈值来
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判断两车之间是否会存在博弈行为；若存在则通过计算主车和目标车道后车的速度

收益、安全收益和舒适性收益得到各自的总收益，建立博弈矩阵通过逆向归纳法对

两车之间的博弈进行推演得到最优决策，从而确定主车是否执行换道策略。 

（4）为充分考虑车辆横纵向耦合和运动学特性对轨迹规划的影响，提出一种基

于凸二次规划和粒子群进化优化的分层轨迹规划算法。首先根据感知层传递的参数

设计安全走廊约束，利用贝塞尔曲线的凸包性可保证整条贝塞尔曲线都在安全走廊

内，然后以横向和纵向曲线的平滑性为目标函数建立一个凸二次规划模型得到下层

规划器；在上层规划器中会根据车辆运动学模型的微分平坦输出对下层规划器得到

的横纵向贝塞尔曲线进行三维耦合，此时车辆的所有状态量如偏航角、质心侧偏角

和车速等都可以由横纵向贝塞尔曲线联合表示，则以车辆乘坐舒适性、换道高效性

和安全性为目标函数，利用粒子群优化算法对下层规划器的初始参数进行二次优化

得到综合性能最优的行驶轨迹，仿真结果表明此算法在保证安全性的同时，具有良

好的乘坐舒适性和可跟踪性。 

（5）为对所提决策规划算法进行验证，本文搭建了基于 Carsim和 Simulink的联

合仿真平台，底层的轨迹跟踪算法采用模型预测控制算法；并设计了三种不同的实

验，分别为在初始时刻主车有加速趋势、主车和目标车道后车都有加速趋势、主车

和目标车道后车都有减速趋势；当主车与目标车道后车交互博弈后，主车换道策略

迫使目标车道后车从加速趋势变减速或以更大减速度减速；首先根据目标车道后车

的反应，规划主车换道轨迹并将其传递给博弈层计算博弈收益矩阵，然后推演出两

车的最优决策，并画出两车在换道过程中的位置曲线、速度曲线、相对距离曲线等

等，仿真结果表明所提决策规划算法能安全高效的完成主动换道。 

创新点 

（1）针对驾驶员换道意图参数多、非线性强的问题，设计了一种基于 GA-DBN

网络的主动换道意图模型；首先利用小波阈值算法对 NGSIM 数据集进行去噪，然后

提取产生换道意图时的数据特征输入到深度置信网络（DBN）中进行训练，并利用

遗传算法优化深度置信网络的超参数如微调次数、动量和学习率等，从而得到一个

拟人化的换道意图模型。 

（2）针对诸多决策算法中并未考虑主车与他车的博弈以及与规划模块完全解耦

的问题，提出了一种基于主从博弈模型的决策算法；首先会根据主车和目标车辆后
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车到达潜在碰撞点的碰撞时间差是否大于安全时间阈值来判断主车与目标车道后车

是否产生博弈交互行为，若产生则通过规划层预先规划得到的轨迹计算博弈收益，

保证规划轨迹的可行性，最后利用逆向归纳法对主车和目标车道后车之间的博弈进

行推演，得到最优决策。 

（3）针对横纵向解耦的规划算法并未合理的考虑车辆运动学特性和最优性的问

题，提出了一种基于车辆运动学微分平坦输出的分层轨迹规划算法框架；在底层构

建以贝塞尔曲线节点为自变量，且满足避障、速度、加速度等凸约束的二次规划问

题，保证算法的概率完备性和行车安全性。利用车辆运动学的微分平坦输出将横纵

向轨迹进行耦合，构建以乘坐舒适性、运动学约束、行车效率等指标的目标函数，

利用粒子群优化（PSO）算法优化终止车速和行驶时间，得到一条满足车辆多目标约

束的行驶轨迹。 

未来工作开展 

本文对高速辅助驾驶的主动换道决策规划算法进行了研究，虽然取得了一定的

成果，但由于本人能力有限、研究时间尚短，在本文的基础上仍然可以从如下方面

进行完善和改进： 

（1）完成对目标车道后车驾驶风格在线识别工作，当主车产生换道意图后会打开转

向灯传递换道意图给目标车道后车，此时需要对目标车道后车驾驶风格进行在线识

别确定其博弈收益权重系数，不同驾驶风格的博弈收益权重系数不同，其大小影响

后续决策模型中的博弈收益矩阵，故需要构建精确的驾驶风格识别模型才能保证主

动换道决策模型的准确性。 

（2）采集更多和更精确的原始数据提升意图分类的准确性，本文从 NGSIM 数据集

中提取了 1564 条自由换道轨迹进行学习，但是并没有将左换道和右换道分开，因为

分开后数据集量较少不利于学习，故后续工作可以加上其它高速公路数据集如德国

高速公路数据集 HighD 用来补充数据，这样就可以将二分类问题转换为三分类问题

进行学习，从而提升换道意图分类的准确性。 

（3）对本文所提出的算法框架进行实车验证。虽然本文利用仿真软件对所提出的主

动换道决策规划一体化框架进行了验证，但仍需进行实车实验才能证明其实用性，

因为高速换道实验具有一定危险性，后续将在实验室低速线控地盘上部署所提出的

决策规划算法，并根据实车调试结果对算法进行验证和改进。 
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