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摘要 

作为自动驾驶车辆的关键技术，轨迹规划与运动控制有重要研究意义。目前自

动驾驶车辆道路测试中，存在车辆模型维护成本高、车辆参数不准确及通信延迟影

响等问题，而大规模的道路测试增大了自动驾驶可使用的数据量。针对上述问题与

背景，本文以无人驾驶赛车迭代跑圈为研究工况，以实时规划控制并在保证安全性

的前提下提高圈速为目标，围绕数据与模型预测控制（Model Predictive Control, MPC）

方法的结合，开展深入研究。 

首先，针对高速车辆的强非线性与横纵向耦合特性，搭建了运动学模型、车辆

三自由度动力学模型和轮胎系统非线性模型。同时针对车辆模型关键参数的获取过

程昂贵且耗时的问题，提出利用驾驶数据离线辨识空气阻力、摩擦阻力及非线性动

力学模型重点参数的方法，为后续规划控制提供模型基础。 

其次，面向高速车辆实时高精度的运动控制需求，设计基于优化的无人车辆双

层运动控制器，用于赛车暖胎圈循迹与后续规划控制器中采样安全集的扩展。上层

建立基于路径点价值评价的路径点筛选器与基于横纵向轮胎力分析的纵向速度规划

器，下层建立线性时变预测模型，设计目标函数与约束条件，实现横向路径跟踪，

设计增量式 PID 控制器，实现考虑轮胎特性的纵向车速跟踪。同时针对实车传感器

噪声问题，引入最小均方（Least Mean Square, LMS）自适应状态估计器提升运动控

制系统的抗噪性。 

然后，针对赛车在完成暖胎圈后的迭代规划控制问题，设计无道路中心线参考

的实时数据驱动规划控制一体式架构，即改进的基于学习的 MPC 算法（Improved-

Learning MPC，I-LearningMPC）。建立动力学预测模型，设计规划控制目标函数与约

束条件。利用历史数据形成采样安全集，构建 MPC 优化问题的终端约束与终端函数。

针对数据集存储空间与学习效果间的矛盾，设计了结合运动控制系统与高精度非线

性模型的采样安全集扩展模块。针对规划控制过程中的通信延迟问题，设计了离线

与在线相结合的辨识方法，及利用高精度非线性模型递推状态的补偿方法。针对模

型失配问题，设计了基于高斯过程回归的模型在线校正模块，利用历史数据构建高

斯过程数据库，在线补偿非线性模型的预测偏差，并设计多线程模式以保证规划控

制实时性。 

最后，搭建 CarSim-dSPACE-ROS 硬件在环仿真平台。设计赛道工况与双移线紧
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急避障场景验证运动控制器，仿真结果表明，设计的运动控制器能以 100Hz 的控制

频率高精度地完成暖胎圈循迹，并在非线性工况下，相比基于线性定常模型的传统

模型预测控制（Traditional MPC, TMPC）降低跟踪误差，提高横摆稳定性。引入附

加传感器噪声验证了 LMS 状态估计器的滤波效果。设计赛车迭代对比试验，对比 I-

LearningMPC 与宾夕法尼亚大学的 xLab 实验室开发的 LearningMPC，仿真结果表明，

30 圈迭代后，I-LearningMPC 规划控制车辆行驶的轨迹耗时更短，更加平顺与稳定。

信号延迟补偿模块减弱了通信延迟的影响。在线校正模块补偿了模型偏差，提高了

延迟补偿模块与采样安全集扩展模块中非线性模型的预测精度。 

 

关键词：轨迹规划；运动控制；数据驱动；模型辨识；模型预测控制 
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Abstract 

As the crucial technology of autonomous vehicles, trajectory planning and motion 

control are of great research significance. In road tests of autonomous vehicles, issues such 

as high maintenance cost of vehicle model, inaccurate vehicle parameters, and the impact of 

communication delays are often encountered. However, large-scale road testing increases the 

amount of data available for autonomous driving. In response to the above problems and 

background, this paper takes the iterative lap racing of unmanned race cars as the research 

condition, aiming to achieve real-time planning and control and increase lap time under the 

premise of ensuring safety. This research focuses on the combination of data and Model 

Predictive Control (MPC) methods. 

Firstly, aiming at the strong nonlinear and longitudinal-lateral coupling characteristics 

of high-speed vehicles, a kinematic model, a three-degree-of-freedom vehicle dynamic 

model, and a nonlinear model of the tire system are established. At the same time, in view of 

the expensive and time-consuming acquisition of key parameters of the vehicle model, a 

method is proposed to offline identify the key parameters of aerodynamic resistance, friction 

resistance, and the key parameters of the nonlinear dynamic model based on driving data, 

providing a model basis for subsequent planning and control. 

Secondly, aiming at the real-time high-precision motion control requirement of high-

speed vehicles, a dual-layer motion controller based on optimization for unmanned vehicles 

is designed. This system is used for tracking warming lap trajectory tracing and the extension 

of the sampling safe set in subsequent planning control module. The upper layer establishes 

a waypoint filter based on waypoint value evaluation and a longitudinal speed planner based 

on lateral and longitudinal tire force analysis. The lower layer establishes a linear time-

varying prediction model and designs the objective function and constraints to realize lateral 

path tracking. An increment PID controller is designed to achieve longitudinal vehicle speed 

tracking considering tire characteristics. At the same time, in view of the problem of sensor 

noise in real vehicles, a Least Mean Square (LMS) adaptive state estimator is introduced to 

improve the noise resistance of the motion control system. 

Then, aiming at the iterative planning and control problem of race car after completing 

the warming lap, the integrated architecture of real-time data-driven planning and control 

without road centerline reference is designed, which is Improved Learning-based MPC 

algorithm(I-LearningMPC). A dynamic prediction model is established, and target functions 
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and constraints for planning and control are designed. Historical data is used to form a 

sampling safe set, and the terminal constraints and terminal functions of the MPC 

optimization problem are constructed. Aiming at the contradiction between dataset memory 

and learning effect, a sampling safe set expansion module combined with the motion control 

system and high-precision nonlinear model is designed. To solve the communication delay 

problem during planning and control, an identification method combining offline and online 

methods and a compensation method using the high-precision nonlinear model to calculate 

state are designed. For the model mismatch problem, an online correction module based on 

Gaussian process regression is designed, and historical data are used to construct a Gaussian 

process database to online compensate for prediction deviations of the nonlinear model, and 

a multi-thread mode is designed to ensure the real-time planning and control. 

Finally, the CarSim-dSPACE-ROS hardware-in-the-loop simulation platform is 

established, and the race circuit conditions and double lane change emergency avoidance 

scenarios are designed to verify the motion control system. The simulation results show that 

the designed motion controller can complete the warming lap tracking with high precision at 

a control frequency of 100 Hz. Compared with the traditional model predictive control 

(TMPC) based on the linear time-invariant model, it reduces tracking errors and improves 

lateral stability under nonlinear conditions. The introduction of additional sensor noise 

verifies the filtering effect of the LMS state estimator. Comparative experiments of iterative 

lap racing are designed, comparing I-LearningMPC with LearningMPC proposed by xLab at 

the University of Pennsylvania. The simulation results show that after 30 laps of iteration, 

the trajectory controlled by I-LearningMPC is shorter, smoother, and more stable. The signal 

delay compensation module weakens the influence of communication delay, and the online 

correction module compensates for model deviations, improving the prediction accuracy of 

the nonlinear model in the delay compensation module and the sampling safe set expansion 

module. 

 

Key Words: trajectory planning; motion control; data-driven; model identification; model 

predictive control 
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第1章  绪论 

1.1 研究背景及意义 

作为车辆工程领域的热点研究方向与变革性技术，自动驾驶不仅有望提升交通

系统运转效率，还能有效降低驾驶过程中存在的风险，对各国汽车产业的发展与相

关产业分布格局具有深远影响。因此近年来各国围绕这一技术制高点发布了一系列

政策文件。2014 年，国际汽车工程师学会（SAE International）发布自动驾驶分级，

其基于自动驾驶的自主程度与人类的干预需求量，将自动驾驶分为从 0级（驾驶员手

动驾驶）到 5级（在任何情况下不需要人类驾驶员的监控交互）[1]。2016年，我国国

家制造强国建设咨询委员会在《中国制造 2025》中提出了对无人驾驶的分级[2]。

2020 年，国务院发布《新能源汽车产业发展规划（2021-2035 年）》，文件指出汽车领

域正朝着“电动化、智能化、网联化”的方向发展[3]。车辆的智能化、无人化成为国

际与国家倡导的发展方向。因此，围绕自动驾驶技术开展研究具有重要意义。 

近年来，随着深度学习的发展与计算芯片的进步，L4 级别以上的无人驾驶逐渐

变成一项有望落地、商业化的技术项目。各大无人驾驶技术公司纷纷开始进行全无

人自动驾驶道路测试。2019 年 11 月，文远知行在广州推出全国首个全对外开放的自

动驾驶出租车服务。2022 年 8 月，元戎启行在深圳进行首次全无人自动驾驶道路测

试。2022 年 11 月，百度 Apollo 与小马智行 Pony.AI 成为首批获准在北京开启“前排

无人，后排有人”的自动驾驶无人化测试的企业。2023 年 6 月，图森未来完成国内

首次自动驾驶重卡在公开道路的全无人化测试。同月，小马智行连续 10 小时实况直

播全无人载客运营。大规模的道路测试中，会采集大量的无人驾驶数据，如何合理

的应用数据成为无人驾驶的研究热点。 

目前主流的无人驾驶技术体系是感知-决策-规划-控制四个模块。感知模块利用

车载传感器，如摄像头，激光雷达，惯性导航系统等采集的信息，对车身进行定位，

并确定周围环境信息；决策模块接受上游感知与高精地图信息，生成行为决策，如

变道、超车、靠边停车等；规划模块根据决策信息与定位信息，生成一条符合条件，

时空连续的轨迹；控制模块根据车辆当前状态对期望轨迹进行跟踪。四个模块间关

联性很强，很多企业将多个模块进行合并，以提高无人驾驶性能。 

各模块中，轨迹规划与运动控制是无人驾驶领域中的核心技术，大部分道路测

试中发生的问题都与这两个模块相关，具体原因包括以下方面，一是实际道路中，
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规划层会遇到各种复杂场景，涉及规则较多，可能出现算法无法覆盖的情况；二是

规划层常用运动学模型，规划结果不合理，运动控制层无法准确跟踪；三是随着车

辆底盘的变化及磨损，车辆模型参数不够准确，导致出现跟踪偏差；四是状态测量

存在噪声与偏差，导致跟踪效果差；五是规划层与控制层对实时性要求较高，如果

掉帧或通信延迟，车辆会左右摆动画龙；六是很多企业为了保证实时性仍采用常数

轮胎刚度的线性模型，在极端工况下控制效果较差；七是每一辆新车开始无人道路

测试前需要单独进行模型辨识建模，工作量大。因此，轨迹规划与运动控制仍有重

要研究意义，而对路测数据的合理应用可以解决上述部分问题。 

本课题以无人赛车为规划控制的研究对象。一方面，相比乘用车，赛车作为一

种特殊平台，较少涉及交通参与者间的博弈，利于聚焦于规划与控制开展研究工作。

另一方面，赛车驾驶工况极端，车辆动力学特性会随着天气条件，赛道温度，轮胎

磨损等情况发生较大变化，固定参数的线性动力学模型无法满足赛车规划与控制的

要求，且赛车规划控制对实时性要求较高，乘用车路测中的常见问题在赛车平台中

更加凸显。随着无人驾驶概念的提出，赛车领域也推出无人驾驶比赛以推动自动驾

驶技术发展，2017 年，首届德国无人驾驶大学生方程式大赛开赛，卡尔斯鲁厄理工

大学，慕尼黑工业大学，斯图加特大学等 22 支车队报名参加，比赛包括直线加速，

八字绕环，无人循迹等多项赛事，以最短用时为目标。2023 年，查尔姆斯理工大学

车队以 10 圈总用时 312.68s 夺得无人循迹赛冠军。2021 年 Indy car赛事举办自动驾驶

挑战赛，九辆赛车以超过 240km/h 的速度疾驰在印第安纳波利斯赛车场上。2024 年 4

月，阿布扎比自动驾驶赛车联盟举办无人驾驶赛车比赛，北京理工大学飞鹰队等 10

支团队针对完全相同的赛车，开发自动驾驶算法并同场竞速。因此，本文针对无人

驾驶乘用车道路测试中的部分问题，以赛车作为平台展开基于数据驱动的规划控制

研究。 

1.2 国内外研究现状分析 

近年来，国内外学者围绕无人驾驶的轨迹规划和运动控制问题展开了诸多研究。

由于本课题的研究背景是解决无人驾驶乘用车规划控制模块的部分问题，所以本节

将首先介绍无人驾驶轨迹规划、运动控制的研究现状，进而聚焦赛车平台规划控制

的现有方法。 
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1.2.1 轨迹规划研究现状 

车辆轨迹规划的任务是在车辆模型、道路、静态障碍物、动态障碍物、交通法

规等约束下，找到一条到达目标的可行驶轨迹曲线。广义上的规划可分为全局路径

规划、行为决策、局部路径规划。本文不涉及决策部分，所以仅对全局路径规划与

局部路径规划的研究现状进行分析。目前轨迹规划方法主要分为基于空间采样的算

法、基于搜索的算法、基于曲线插值的算法、基于优化的算法与基于强化学习的算

法，这几种方法各有优点与局限性，如表 1.1 所示。 

表 1.1 轨迹规划方法优缺点 

方法 优点 缺点 

空间采样算法 概率完备，搜索效率高 
随机性高，路径非最优，障碍物数

量多时计算复杂性高 

搜索算法 全局最优性 曲率不连续，地图大时搜索效率慢 

曲线插值算法 计算成本低 受限于曲线形态约束，灵活性欠佳 

优化算法 易考虑车辆约束，空间连续 障碍物非凸性，状态向量维度高 

强化学习算法 对不同环境适应性好 前期收敛速度慢，易产生维数灾难 

基于空间采样的算法的基本思想是在构型空间中生成样本点，并寻找满足任务

需求的样本点序列作为规划结果。基于采样的规划不需要遍历自由区域，轨迹的可

行性通过碰撞检测进行验证，具有概率完备性。代表性的采样算法包括：概率路线

图算法（Probabilistic Roadmap, PRM）及快速搜索随机树算法（Rapidly-exploring 

Random Trees, RRT）。 

PRM算法的采样是均匀、随机的，效率较低，RRT在 PRM基础上引入搜索树，

计算效率更高。采样算法的局限在于随机性高、路径非最优、障碍物数量较多时计

算复杂性高。近些年，学者们基于传统 RRT 在求解效率、最优性等方面提出了许多

改进算法。 

Karaman 等人在 RRT 基础上增加了重新选择父节点与重布线随机树的过程，得

到具有渐进最优性质的RRT*算法，但算法收敛较慢，且消耗更多内存[4]。基于RRT*

框架，Jeong 等人扩大选择父节点的范围，提升收敛速度，并获得更优的解，但采样

点的减少会影响狭窄环境下效果[5]。Belaid 等人通过在障碍物附近生成样本与路径优

化技术，提升 RRT*在狭窄通道与杂乱环境时的搜索效率[6]。 
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Kuffner 等人在 RRT 基础上从起点与终点生长两棵树，这种双向展开策略能有效

地加快路径搜索速度[7]。Jordan 等人结合 RRT*与双向展开的思想，提出了最优双向

快速探索随机树（Bidirectional RRT*, B-RRT*）[8]。Wang 等人在 B-RRT*基础上提出

自适应扩展双向 RRT*，通过自适应调整采样概率及利用三角不等式原理进行插值和

后处理优化等方式，提升了复杂环境下的效率与鲁棒性[9]。 

基于搜索的算法是将状态空间通过确定的方式离散成搜索图，并用启发式搜索

算法计算其可行解。经典的路径搜索算法有 Dijkstra 算法，A*算法等。A*算法在

Dijkstra 算法基础上引入启发式函数，使算法朝着目标节点方向搜索，提升算法效率。

图搜索算法可得到全局范围最优解，但地图过大时，搜索效率慢。在 A*基础上，混

合A*结合车辆运动学约束[10]，Weighted A* 通过增加启发式函数权重提升搜索速度，

但无法保证轨迹最优[11]， D*[12] ，Lifelong Planning A*[13]，D* Lite[14]等算法利用历史

搜索信息在环境变化时对少数节点重规划，解决了障碍物动态变化的问题。 

基于曲线插值拟合的算法是基于预先构造的曲线类型，将车辆当前状态与期望

状态作为边界条件，求解方程获得运动轨迹。轨迹规划常用的曲线类型包括 Dubins

曲线[15]、Reeds and Sheep 曲线[16]、回旋线[17]、多项式插值曲线[18, 19] 、B 样条曲线[20]、

贝塞尔曲线[21]等。不同插值曲线适用场景不同，如回旋线适用于低速运动规划，B

样条、贝塞尔曲线等样条曲线适合高速运动规划。Shi 等人利用三次多项式曲线，考

虑车辆防侧翻约束与道路约束，规划最优避障轨迹[22]。Chen 等人采用将速度信息视

为垂直坐标的三维四次贝塞尔曲线，实现速度与坐标对应的时空耦合规划，提高变

道效率[23]。但受限于曲线形态，曲线插值拟合一般只应用于特定工况。 

数值优化的算法根本原理是构建并求解一个优化问题，其优点在于易于考虑车

辆运动学、动力学约束及环境的约束；优化问题在连续空间内进行，不需要对环境

进行离散化；整条轨迹同时优化调整，如构建凸问题，可以保证轨迹最优。缺点在

于障碍物具有高度非凸性；整条轨迹位置状态叠加，会形成高维向量。 

Liu 等人提出的凸可行集算法，通过超平面将避障的非凸约束转化为凸约束，提

升数值优化问题的求解速度[24]。Xin 等人以 A*算法搜索结果作为优化问题的参考，

结合凸可行集方法，利用模型预测算法进一步优化轨迹，能够在约束动态环境下实

现更快、更流畅的时空轨迹规划[25]。Chen 等人提出考虑约束的迭代线性二次型调节

器，提升高度动态环境（躲避动态障碍物、超车）中非线性优化问题的求解速度[26]。 

基于强化学习的算法是与环境直接交互并不断试错迭代，通过反馈信息优化当
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前控制动作，实现自主学习和在线学习[27]。其优点在于对不同环境适应性好，缺点

是前期收敛速度慢且在环境复杂与系统状态维度增加时产生维数灾难。Lu 等人采用

分层结构的深度确定性策略梯度（Deep Deterministic Policy Gradient, DDPG）算法学

习动作与轨迹，实现未来轨迹的决策、规划与控制[28]。余伶俐等人利用 DDPG 和车

辆动力学模型训练逼近最优智能驾驶的强化学习模型，并通过模型迁移，利用深度

强化学习模型计算控制与轨迹序列[29]。 

1.2.2 运动控制研究现状 

经典运动控制方法包括 PID控制，线性二次型调节器（Linear Quadratic Regulator, 

LQR）控制，纯跟踪控制，Stanley控制等。PID控制对车辆跟踪偏差进行比例，积分，

微分计算得到前轮转角。Marino 等设计了一种基于视觉的自动驾驶 PID 转向控制系

统，其利用偏航率与横向偏差得到方向盘角度[30]。Al-Mayyahi 等利用分数阶 PID 控

制器控制车辆跟踪参考路径，并采用粒子群优化算法优化控制器参数[31]。PID控制算

法不依赖模型，参数调整与工程指标紧密接触，但其控制存在滞后，容易出现超调

与“画龙”。LQR 控制算法建模路径跟踪问题，并设计代价函数，迭代求解黎卡提方

程得到最优反馈矩阵。高琳琳等提出带前馈控制的改进 LQR 横向控制算法，并提出

基于跟踪偏差的参数计算方法与基于车-路位置关系的参数调整规则[32]。胡杰等设计

了预瞄转角补偿的模糊 LQR 算法，并进行实车试验[33]。LQR 控制器控制效果较好，

但高速或曲率过大时控制效果下降，且无法添加约束。纯跟踪控制采用车辆运动学

模型，根据预瞄距离选择目标参考点，通过几何关系推导前轮转角。Wang 等采用两

个模糊控制器调整算法中的行驶速度与预瞄距离，以更好的跟踪连续与不连续曲率

的轨迹[34]。纯跟踪算法在低速时效果更好，且鲁棒性较好，但不同工况下预瞄距离

需要变化，运动学模型导致高速工况下跟踪偏差较大。Stanley 算法根据车速计算得

到预瞄距离，利用预瞄距离与横向偏差计算得到前轮转角，并加入纠正偏航角偏差

所需的前轮转角[35]。Stanley 算法低速、中速时跟踪偏差较小，但对参考路径平滑度

要求较高。 

随着最优控制在工业界的应用，模型预测控制（Model Predictive Control, MPC）

也逐渐应用于自动驾驶车辆运动控制。模型预测控制利用模型对未来状态进行预测，

通过求解优化问题，获取最优控制序列。自动驾驶车辆低速行驶时，运动学模型可

以满足预测精度需求，Borrelli 等人于 2005 年基于车辆运动学模型设计 MPC 轨迹跟
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踪控制器，实现车辆横纵向耦合控制[36]。随着速度的增加，运动学模型无法复现车

辆的动力学响应特性，运动学模型的 MPC 更多应用于数值优化的轨迹规划当中，运

动控制中主要使用动力学模型进行预测。 

动力学模型包括车辆模型与轮胎模型，车辆模型常使用二自由度单轨模型，三

自由度单轨模型，14 自由度模型等，轮胎模型分为从轮胎物理特性出发的物理模型，

从轮胎测试数据拟合的经验模型及二者的综合。常用的轮胎模型包括定常刚度轮胎

模型、魔术轮胎模型、刷子模型等。一些学者提出基于线性定常动力学模型的 MPC

控制器，将轮胎刚度视为常数。Lu 等人对比了线性定常模型预测控制，LQR 等多种

运动控制器，评估其在不同干扰条件下的性能[37]。Chen 等提出一种线性定常模型预

测控制与 PID 结合的横纵向解耦运动控制方案，并通过软件仿真验证其具有良好路

径跟踪和速度跟踪性能[38]。虽然计算复杂度低，但由于轮胎在大侧偏角时的非线性

特性，所以线性定常动力学模型预测控制并不适用于较大横向加速度的工况。 

针对轮胎力与轮胎侧偏/滑移间的非线性关系，Novi 提出一种非线性模型预测控

制（Nonlinear MPC, NMPC）的双层控制方案，上、下层分别使用点质量模型与七自

由度动力学模型以长、短时域运行，并进行仿真验证[39]。Goh 等人利用 NMPC 实现

车辆极限漂移循迹控制[40]。Besselmann 等人提出线性参变模型预测控制（Linear 

Parameter Varying MPC, LPV-MPC），其通过将线性模型参数表示为线性模型的组合，

使线性模型在准确性上更加接近非线性模型[41]。Cisneros等人提出一种基于基础 LPV

的拟 LPV 框架，调度参数由状态变量和输入决定，使预测模型在每步中适应实际系

统演化[42]。2014 年，龚建伟等人在著作中系统地介绍了线性时变模型预测控制

（Linear Time Varying MPC, LTV-MPC）运动控制方法[43]。LTV-MPC 对动力学模型进

行线性化处理，在控制器运行过程中，线性状态空间方程随时间变化，其既近似轮

胎的非线性特性，又保证计算实时性。Zhao 等在 LTV-MPC基础上使用规划横向投影

速度代替航线角误差，并采用无偏移 MPC 理论系统地解决了车辆运动控制问题的状

态与控制参考计算，提升跟踪精度[44]。Falcone 等人对比 NMPC 与 LTV-MPC 的计算

复杂度与性能，LTV-MPC 在参考点附近的预测精度与 NMPC 接近，计算复杂度显著

降低[45]。运动控制方法对比如表 1.2。 

表 1.2 运动控制方法对比 

方法 优点 缺点 

PID 控制效果不依赖模型精度 存在滞后性，容易超调与“画龙”  
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1.2 续表 

方法 优点 缺点 

LQR 中高速控制效果好 无法添加约束，曲率变化超调严重 

纯跟踪 鲁棒性好，低速效果好 中高速跟踪效果差 

Stanley 中低速跟踪偏差小 要求路径曲率连续 

运动学模型 MPC 低速效果好，有预见性 中高速跟踪效果差 

动力学模型 LTI-MPC 轮胎线性区工况内效果好 非线性区效果差，超低速时奇异 

动力学模型 NMPC 极限工况控制效果好 求解耗时高，超低速时奇异 

动力学模型 LTV-MPC    控制精度与求解耗时较好 线性化参考点要求高，超低速时奇异 

1.2.3 赛车规划控制研究现状 

赛车的目标是减少单圈时间，即在赛道上以时间最优行驶。目前国内外赛车规

划控制的架构主要分为使用离线轨迹规划与实时运动控制的分层架构，实时轨迹规

划与实时运动控制的分层架构，及实时轨迹规划控制一体的单层架构。 

经典的赛车规划控制架构为离线轨迹规划与实时运动控制的分层架构，在离线

规划器中通常构建最小曲率优化问题[46]或最快圈速优化问题，可综合考虑各种车辆

性能因素和优化目标，包括使用更高阶次的模型[47]，考虑空气动力学[48]，赛道摩擦

系数[49]，赛道倾角[50]等变化因素，构建优化问题后利用非线性规划求解器进行求解，

其求解时间相对较长，无法实时应用。Jain 等人提出一种利用贝叶斯优化引导采样，

进行迭代搜索最优轨迹的优化方法，采用 CVXPY求解器[51]，最终总离线规划时间需

要近 3 分钟[52]。经典架构的下层只跟踪离线规划的轨迹，一方面，无法适用于动态

障碍物场景，另一方面，若下层因意外未能跟踪轨迹，无法实时重规划保证安全。 

相比离线规划与实时运动控制，利用模型预测控制方法的实时轨迹规划与实时

运动控制更贴合赛车手的驾驶方式，其可以根据当前状态规划最优轨迹。

Verschueren 等提出一种双层实时架构，其包含局部定长预测里程域最短时间优化与

非线性轨迹跟踪问题两部分，并在小型赛车上验证了所提出的算法[53, 54]。Alrifaee 等

提出了一种用于赛车轨迹优化的实时模型预测控制器，利用序列线性化解决了赛道

边界引发的非凸问题[55]。分层规划控制的不足在于不准确的规划层模型可能导致底

层控制算法无法跟踪。 

Liniger 等在 1:43 的 RC 赛车上提出了具有障碍物与对手车辆的模型预测轮廓控
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制，在单层优化问题中完成了实时轨迹规划与运动控制两部分，但发现轮廓横向误

差惩罚项导致路径距离加长[56]。Scheffe 等人在此基础上，利用序列凸规划作为凸化

道路约束的方法，保证了非凸优化问题解的可行性，并提高了圈速[57]。Rosolia 等提

出的无参考 MPC 赛车规划控制架构也是典型的单层架构，其不是基于预先计算的赛

车线，而是从数据经验中学习轨迹，以最大限度缩短圈时[58-61]，单层架构相比实时

分层架构优点在于合并规划层与控制层，结构更简洁，且在规划问题中考虑非线性

模型与车辆控制，不会出现由于规划层模型不准确导致的控制算法无法跟踪。缺点

为优化问题容易过于庞大导致求解速度变慢，调参比较困难。 

随着数据驱动与强化学习领域发展，许多学者采用强化学习算法训练驾驶策略，

进行赛车规划控制，其优点为对不同的赛道适应性好，缺点为可解释性与安全性较

差。Jaritz 等人利用异步优势动作评价（Asynchronous Advantage Actor Critic, A3C）算

法学习拉力赛车的驾驶策略，仅输入前置摄像头的 RGB 图像，输出驾驶控制命令[62]。

Remonda 等人使用 DDPG 的不同变体训练驾驶策略，并使用预瞄曲率表示前方的赛

道形状，试验结果表明，训练的驾驶模型优于开源仿真平台 TORCS 中的机器人，且

对未知赛道有较好的泛化能力[63]。Wang 等人结合强化学习与动作映射机制，使赛车

更好利用轮胎与路面间的附着条件，单圈时间相比无动作映射机制的强化学习方法

缩短 22%[64]。 

部分学者将数据驱动与模型预测控制相结合，以结合二者的优点，提升赛车轨

迹规划与运动控制表现。数据驱动与模型预测控制的结合主要通过三种形式。第一

种形式是通过数据拟合模型预测控制中的系统动力学模型。Kabzan 等人使用高斯过

程回归来增强简单的模型，提高赛车性能。利用高斯过程的不确定性，动态收紧约

束以实现安全驾驶，用于高斯过程回归的数据点是根据信息更新标准从连续的测量

数据流中在线选择的，能够在驾驶期间持续学习。测试结果，迭代 5圈后单圈时间减

少 10%，且始终保证安全性[65]。Rosolia 等人利用最小均方方法对车辆系统未知部分

进行辨识，构建未知部分的输出与特征状态量间的线性关系，提升模型准确性[58]。

Ren 等人提出一种实时偏差学习方法，利用循环神经网络（Recurrent Neural Network, 

RNN）将偏差表述为隐节点的线性组合，以循环形式捕捉模型偏差的非线性，并与

高斯过程对比，证明 RNN 更加有效[66]。 

第二种形式是利用数据获取终端约束条件，成本函数等，保证 MPC 的可行性与

渐进稳定性，提升控制器表现。Rosolia 等人针对赛车迭代任务，设计一种无参考的
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学习 MPC 架构。从已有的迭代数据中获取最大稳定集，定义为安全集，利用安全集

构建终端目标函数并将终端状态约束在安全集内，在没有模型失配情况下，保证

MPC 控制器的收敛性，递归可行性与渐近稳定性，但随着圈数增加，安全集内数据

增多，会出现数据集存储空间与学习效果的矛盾[58-61]。Costa 等人采用遗传算法，利

用历史数据在线优化 MPC 的目标函数及约束条件参数，优化 MPC 参数后，单圈时

间减少 9.07%[67]。 

第三种形式是利用 MPC 对强化学习等数据驱动算法输出的控制量进行二次处理，

以提高数据驱动算法的安全性。Tearle 等人在赛车的控制器与被控系统间加入包含

MPC 优化问题的安全过滤器，对驾驶员操作与迭代模仿学习算法输出的危险控制量

进行干预，在 MPC 问题中利用迭代优化的不变集作为终端安全集，保证车辆安全[68]。

Wabersich 依靠线性鲁棒 MPC 方法为基于学习的控制器提供安全保障[69]。 

1.2.4 目前研究工作的不足 

以上内容对无人驾驶车辆轨迹规划、运动控制及赛车规划控制技术的研究现状

进行了分析和讨论，总结其不足如下： 

（1）主流的 MPC 无人驾驶轨迹规划，虽然实现了多目标优化的功能，但由于

计算实时性要求，大部分研究采用运动学模型或线性定常动力学模型，当车辆在轮

胎非线性区行驶时，造成动力学上规划的轨迹不可行。少数研究建立复杂的动力学

模型和约束，使计算成本增加，无法满足规划频率要求。单纯基于机器学习的端到

端方法，在稳定性与应用可行性方面仍难以得到保证。 

（2）大部分基于模型预测的研究仅用物理参数构建模型，试验成本高，且未考

虑模型失配问题，少部分研究利用高斯过程等数据驱动方式进行模型在线校正，但

在实际应用时，由于在线数据库更新耗时较长导致实时性差。此外，大部分研究未

考虑在实际车辆可能出现的通信延迟问题。 

（3）在赛车实时规划控制的目前研究中，基于模型预测控制的研究普遍需要以

道路中心线或预先计算的赛车线为参考线，并在目标函数中对偏移参考线进行惩罚，

使赛车有时会向参考线偏移，影响圈速。少数基于数据学习的无参考线规划控制研

究，随着迭代圈数增加，出现数据集存储空间与学习效果间的矛盾。 
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1.3 本文研究内容及论文结构 

基于当前背景与研究现状，服务于量产车高速无人驾驶技术的发展与大规模道

路测试，本文以无人驾驶赛车为研究工况，以实时规划控制并在安全前提下提高圈

速为目标，重点研究数据与模型预测规划控制方法的结合，解决车辆参数测试成本

高，模型精度不足与失配，数据集存储空间与学习效果间存在矛盾，高速车辆规划

控制过程中实时性与通信延迟等问题。首先，对无人驾驶车辆系统进行研究，分别

建立车辆运动学模型、动力学模型和非线性轮胎模型，在此基础上，基于最小二乘

法与贝叶斯优化利用日常驾驶数据离线辨识模型参数；其次，建立包括路径点筛选

器、纵向速度规划器、横向路径跟踪控制器、增量式 PID 纵向控制器与 LMS 状态估

计器的高速车辆实时高精度运动控制系统进行暖胎圈循迹；然后以最快圈速为目标

建立基于采样安全集的一体式轨迹规划控制器，并针对数据集存储空间与学习效果

间的矛盾，利用运动控制系统与高精度非线性模型扩展采样安全集空间；针对规划

控制中模型失配问题，利用数据构建高斯过程模型，建立基于高斯过程回归的在线

模型校正模块；针对规划控制中通信延迟问题，建立通信延迟辨识与补偿模块。同

时，进行硬件在环仿真测试，以保证实际应用价值。各章研究内容逻辑关系如图 1.1

所示。  

第二章 无人车辆系统模型与参数辨识

第三章 基于线性时变
模型预测控制的运动控制器

采样安全集扩展模块 基于采样安全集的
一体式规划控制器

信号延迟补偿模块

高斯过程回归在线校正模块

线性定常与线性时变车辆模型 非线性车辆模型 线性时变车辆模型 非线性车辆模型

延迟补偿服务安全集控制虚拟车辆模型

在线校正服务 在线校正服务

第五章 赛车迭代轨迹规划与运动控制策略验证

硬件在环试验验证

第四章 基于采样安全集的赛车模型预测规划控制器

 

图 1.1 研究内容关系图 

根据如图 1.2 所示研究技术路线，本文五个章节组织结构如下： 

第一章为绪论。首先介绍目前无人车辆技术发展背景及在大规模道路测试中轨

迹规划与运动控制方面的现存问题，说明课题的研究意义，阐述无人赛车发展背景；

之后对无人车辆轨迹规划技术与运动控制技术，以及无人赛车规划控制的国内外研

究现状进行分析和总结；最后针对道路测试常见问题与国内外研究现状介绍本文的

研究内容与技术路线，同时对各章内容进行总体说明。 
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第二章建立车辆系统和轮胎系统模型。该章首先介绍了大地坐标系与道路坐标

系下的车辆运动学模型，给出车辆不同坐标系下的位置与车速、横摆角速度、质心

侧偏角间运动关系；之后介绍了考虑车辆纵向、横向、横摆的三自由度车辆非线性

动力学模型；随后对车辆前后轴荷转移、轮胎纵向力、侧向力进行分析，介绍了基

于魔术公式的非线性轮胎模型；然后选择待辨识参数，搭建驾驶员在环数据采集系

统采集驾驶数据，并利用最小二乘法辨识空气阻力与滚动阻力；最后利用贝叶斯优

化方法辨识非线性动力学模型参数，为后续章节提供模型基础。 

第三章设计基于线性时变模型预测控制的运动控制器。该章首先分析本研究中

暖胎圈循迹与采样安全集扩展模块对运动控制系统的需求，并设计运动控制系统架

构；随后从上层到下层分别设计路径点筛选器、纵向速度规划器，横向路径跟踪控

制器、PID 纵向控制器与 LMS 状态估计器；在横向路径跟踪控制器介绍中，展开阐

述了模型预测控制的原理与控制器中预测模型、目标函数、约束条件、优化求解设

计。运动控制系统用于暖胎圈循迹与第四章采样安全集扩展模块中的虚拟车辆控制。 

第四章设计基于采样安全集的赛车模型预测规划控制器，用于暖胎圈结束后的

多圈迭代规划控制。该章首先对赛车迭代问题进行分析，并设计了赛车迭代规划控

制系统架构；其次，介绍了本研究中采样安全集的相关定义、在迭代 MPC 问题中的

意义及其凸化处理方法；在此基础上，设计初始采样安全集的构建方法与采样安全

集扩展方式；随后从预测模型、目标函数、约束条件与优化求解四个方面设计针对

赛车迭代规划控制的优化问题；然后针对规划控制中存在的通信延迟问题，分析信

号延迟来源并提出延迟辨识与补偿方法；最后针对模型失配问题，设计基于高斯过

程回归的在线模型校正方法，对信号延迟补偿与采样安全集扩展中的非线性模型进

行在线校正。 

第五章设计硬件在环仿真试验，进一步验证第三章与第四章的规划控制策略。

该章首先建立 CarSim-dSPACE-ROS 硬件在环仿真平台；然后设计赛道工况与双移线

工况，进行本文第三章设计的运动控制系统与基于线性定常模型预测控制的传统运

动控制系统的对比试验；同时在此基础上引入传感器噪声，验证了运动控制系统中

LMS 状态估计器的有效性；随后在赛道工况中对本文第四章设计的赛车迭代规划控

制器与宾夕法尼亚大学的 xLab实验室开发的 LearningMPC规划控制器进行迭代 30圈

的对比试验验证；最后分析验证信号延迟补偿模块与在线模型校正模块在试验中的

有效性。 



北京理工大学硕士学位论文 

 12 

最后，在结论部分对本课题所做的工作内容进行总结，归纳提出本文主要贡献

与创新点，并对未来工作进行了展望。 

基于线性时变模型预测控制的运动控制器

车辆运动学与动力学建模

车辆运动学模型 车辆三自由度单轨动力学模型 魔术公式轮胎模型

选择待辨识参数

最小二乘法辨识空气阻力与滚动阻力

贝叶斯优化辨识动力学模型参数

驾驶员在环数据采集系统建立

驾驶数据采集与处理
测试集模型准确性验证

训练集模型参数辨识

训练集模型参数辨识

测试集模型准确性验证

纵向车速规划器

第二章 无人车辆系统模型与参数辨识

第三章 基于线性时变模型预测控制的运动控制器

车辆运动学与动力学建模

车辆运动学模型 车辆三自由度单轨动力学模型 魔术公式轮胎模型

选择待辨识参数

最小二乘法辨识空气阻力与滚动阻力

贝叶斯优化辨识动力学模型参数

驾驶员在环数据采集系统建立

驾驶数据采集与处理
测试集模型准确性验证

训练集模型参数辨识

训练集模型参数辨识

测试集模型准确性验证

运动控制系统架构设计

路径点筛选器

横向路径跟踪控制器PID纵向控制器

LMS状态估计器

信息预处理器

模型预测控制理论

预测模型建立

目标函数设计

约束条件设计

优化求解处理

第四章 基于采样安全集的赛车模型预测规划控制器

赛车跑圈问题分析 赛车跑圈规划控制系统设计

采样安全集定义

采样安全集构建与扩展

赛车跑圈规划控制优化问题设计

高斯过程回归原理

在线模型校正方案设计

超参数优化设计

数据库设计

信号延迟分析

信号延迟补偿

信号延迟处理模块

在线模型校正模块

预测模型建立 目标函数设计 约束条件设计 优化求解处理

第五章 赛车跑圈轨迹规划与运动控制策略验证

硬件在环仿真环境配置

CarSim配置 dSPACE配置 ROS/C++代码架构设计

基于线性时变模型预测控制的运动控制系统试验验证

赛道工况验证 双移线工况验证

附加传感器噪声下
LMS状态估计器验证

基于采样安全集的赛车模型预测规划控制器试验验证

赛车迭代跑圈对比验证试验

信号延迟处理模块效果分析

在线模型校正模块效果分析

研究结果应用方向

研究路线

提供线性时变动力学模型提供线性定常动力学模型

提
供
非
线
性
动
力
学
模
型
用
于
状
态
预
测

提
供
线
性
时
变
动
力
学
模
型

提
供
非
线
性
动
力
学
模
型
作
为
虚
拟
车
辆

提供在线校正服务

运
动
控
制
虚
拟
车
辆

试
验
验
证

试
验
验
证

 

图 1.2 论文技术路线图 
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第2章  无人车辆系统模型与参数辨识 

本章针对无人赛车规划与控制，建立大地坐标系下与道路Frenet坐标系下的车辆

运动学模型，横纵向耦合的三自由度车辆动力学模型，及考虑轮胎力饱和特性的基

于魔术公式的非线性轮胎模型。利用驾驶员在环仿真平台进行数据采集，并分别利

用采集的状态训练集与状态测试集辨识模型参数、验证模型准确性，供后续运动控

制系统与规划控制器使用。  

2.1 车辆运动学模型 

车辆运动学模型用于构建车辆位置、航向与质心速度、质心速度方向间的关系，

其将车辆视为刚体，以几何学与物理运动学为基础，不涉及车辆力学分析。 

2.1.1 大地坐标系下车辆运动学模型 

大地坐标系下车辆运动学模型如图 2.1 所示，本文大地坐标系O XYZ− 遵守笛卡

尔坐标系右手法则，以东为 X 轴正方向，以北为Y 轴正方向。车体坐标系 o xyz− 根

据 ISO 8855 标准，以车轴朝前为 x 轴正方向，垂直车轴朝左为 y 轴正方向，右手定

则逆时针为车辆横摆自由度正方向。 

O
X

Y

o
r

yv
v




x

y

xv

 

图 2.1 大地坐标系运动学模型示意图 

图中，为车辆横摆角； r 为车辆横摆角速度； v为车辆质心速度； xv 为车辆质

心速度的轴向分量； yv 为车辆质心速度的垂直轴向分量；  为质心侧偏角。无人赛

车工况极端，建模过程考虑车辆横向速度，即车辆质心速度方向与车辆轴向方向不

相同，质心侧偏角不为 0。车辆质心速度方向与 X 轴间夹角为车辆航向角 ，为横摆

角与质心侧偏角 之和。 

模型以 , ,X Y  为状态量，大地坐标系下车辆运动学模型微分方程如下： 
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( )

( )

cos

sin

X v

Y v

r

 

 



= +

= +

=

 (2.1) 

大地坐标系下车辆运动学模型优点为状态量易于测量，公式较为简单，不需要

任何参数信息及对任何参数进行辨识。 

2.1.2 道路坐标系下车辆运动学模型 

大地坐标系易于建模，但赛车行驶过程是沿着赛道进行，赛道的路径较为复杂，

仅通过 X  , Y 坐标，无法知道车辆在赛道中的位置，也较难在规划及控制问题中对道

路边界进行约束。道路坐标系，即 Frenet 坐标系，其以参考线的切向分量 与法向分

量 n建立坐标系，车辆质心为原点。如图 2.2，道路坐标系下 s 为车辆质心沿参考线

方向的投影距离； ns 为车辆质心偏移参考线的距离； e 为横摆偏差角，其为车辆大

地坐标系横摆角与参考横摆角间夹角。 

yv

v

xv

s
ns

e

 

图 2.2 道路坐标系运动学模型示意图 

模型以 [ , , ]ns s e  为状态量，根据投影几何原理，道路坐标系下运动学模型微分

方程为： 

 

( )

( )

( )

cos

1

sin

cos

1

n

n

n

v e
s

s

s v e

v e
e r

s






















+
=

−

= +

+
= −

−

 (2.2) 

式中， 为参考点曲率；投影距离导数 s 为车速沿参考线方向投影；横摆偏差角导

数 e 为横摆角速度与参考横摆角速度差。道路坐标系下运动学模型优点在于便于进

行规划及控制问题的构建，但公式较复杂，且需要参考线曲率信息。 
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2.2 车辆动力学模型及轮胎模型 

车辆运动学模型仅是车辆速度与位置间的关系构建，为了进行更准确的规划控

制，需要对无人赛车本身进行更精确的建模。 

2.2.1 车辆动力学模型 

车辆本身是高度复杂的机械产品，其包含传动、转向、制动及行驶四大系统，

各系统内部又有部件间的机械连接与运转配合，这使得其在动力学表现上具有较强

的横纵耦合性、自由度与非线性。动力学模型是通过力学或机械原理对车辆的力与

运动间关系进行近似建模，需要确保模型对车辆动力学特性具有较高的拟合精度，

但过于复杂的动力学模型会对后续规划控制问题的构建与计算求解造成负担，所以，

如何平衡动力学模型的精度与复杂性是动力学建模的关键问题，需要根据实际问题

进行一定程度的假设，忽略对问题影响较小的车辆自由度。 

赛车行驶道路的路面不平度等级高，道路起伏少，横纵向坡度少，车辆行驶速

度高，空气阻力影响较大，转向灵敏，工况极端。基于以上分析，本文对赛车动力

学模型构建做出以下假设： 

（1）车辆始终行驶在平坦路面，忽略道路起伏、横纵向坡度、路面不平度与其

对悬架及轮胎系统的影响，忽略车辆的垂向及车身的俯仰侧倾自由度，道路附着系

数均匀。 

（2）考虑车辆空气动力学效应与摩擦阻力。 

（3）车辆前轮转向，前后轴驱动，忽略转向、驱动执行器执行惯性延迟。 

（4）考虑车辆加减速时前后轴荷转移，考虑左右轴荷转移产生的侧偏刚度变化。 

基于以上假设条件，针对赛车在水平面的横纵耦合动力学特性，建立包括纵向，

横向和横摆三个自由度的动力学模型，如图 2.3 所示，车体坐标系与运动学模型相同。

其中， fxF  , fyF  , rxF 与 ryF 分别为地面对前、后轴的纵向力与侧向力； 为前轮转角；

f , r 分别为前、后轴轮胎侧偏角； RF 为摩擦阻力； Dk 为空气阻力系数。 

v

xv

yv

2
R DF k v+

ryF

rxF

fyF
fxF

f 
r 

r

 

图 2.3 车辆三自由度单轨动力学模型 



北京理工大学硕士学位论文 

 16 

以运动学模型中 , ,v r  为状态量，三自由度车体动力学微分方程如下： 

 

( ) ( ) ( ) ( ) ( )

( ) ( )( )

( ) ( ) ( ) ( ) ( )

2

f yf r R D r

f f f r r
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x x y

x y y
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x y x y

F F F F k v F
v

M
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     

 

     


− − − + − − +
=

+ −
=

− + − − − − +
= − +

 (2.3) 

式中，M 为车辆质量； fL 为车辆前轴到质心距离； rL 为后轴到质心距离； zI 为车辆

绕 z 轴转动惯量，如式(2.4)。 

 2

z zI MR=  (2.4) 

式中， zR 为转动惯量半径。根据牛顿定律可得车辆纵向加速度 xa 与横向加速度 ya 如

下： 

 

( ) ( )

( ) ( )

2

f f r R D

f f r

cos sin

sin cos

x y x

x

x y y

y

F F F F k v
a

M

F F F
a

M

 

 

− + − −
=

+ +
=

 (2.5) 

2.2.2 轮胎模型 

轮胎是车辆的重要组成部分，地面对车辆的横纵向作用力都是通过轮胎进行传

递。根据车辆动力学模型可知，轮胎力对车辆行驶的横纵向特性产生很大影响，而

现代轮胎是一个复杂的粘弹性结构，具有明显的非线性特性[70]。 

现有轮胎模型可分为经验模型与物理模型。经验模型根据轮胎试验数据，通过

插值或函数拟合给出轮胎特性公式，典型的经验模型包括 Pacejka 提出的魔术公式[71]

与郭孔辉院士提出的幂指数统一轮胎模型[72]，二者均可用于轮胎的稳态侧偏、纵滑

及纵滑侧偏联合工况。物理模型根据轮胎物理结构及轮胎与路面间的相互作用机理

和力学关系建立模型，典型的物理模型包括弦模型、辐条模型、Fiala 刷子模型等。

由于轮胎模型也会应用于规划控制问题构建，所以轮胎模型建模需要在保证精度的

前提下，减少模型公式复杂性。轮胎模型建模分为以下三部分： 

（1）前后轴荷转移分析 

垂向载荷是影响轮胎特性的关键因素，在构建轮胎模型前需要分析前后轴荷，
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如图 2.4， g 为重力加速度， fzF 与 rzF 分别为前、后轴垂向载荷， h 为质心离地高度。 

fzF
rzF

xa
Mg h

fL rL

 

图 2.4 车辆前后轴荷转移分析 

分别以后、前轮胎接地点为原点进行力矩分析，可得前、后轴垂向载荷如下： 

 

r
f

f
r

x
z

x
z

MgL Ma h
F

L

MgL Ma h
F

L

−
=

+
=

 (2.6) 

式中， L 为车辆轴距，加速度 xa 以沿车轴朝前为正。加速时，后轴垂向载荷增大，

可提供更大轮胎力。 

（2）轮胎纵向力分析 

大部分经验模型与物理模型的纵向力都是与车轮滑动率相联系，车轮滑动率定

义如下： 

 

w w
w w

w

w w
w w

w

wR v
v wR

wR

wR v
v wR

v



−



= 

− 


 (2.7) 

式中，w为轮速， wR 为车轮有效半径， wv 为车轮轮心前进速度，其中车轮轮速动力

学方程如下： 

 ( )d b w

w

f , r
xT T F R

w
I

  


− −
= =  (2.8) 

式中， wI 为车轴转动惯量， dT  为前、后轴驱动力矩， bT  为前、后轴制动力矩。该

模型对轮胎纵向动力学有较为精确描述，但存在如下问题，首先纵向滑动率在驱动

与制动时公式不同，使规划控制的优化问题复杂，其次车轮的转动惯量与整车转动

惯量差距大，使轮速变化率与横摆角速度等车辆动力学状态不在同一快慢尺度，模

型线性化后状态矩阵的条件数较大，在离散化后易发散[73]。所以本文在模型构建中

对纵向力进行简化处理，如式(2.9)。 
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w
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T
F

R



 =  (2.9) 

式中，T 为前、后轴驱动/制动力矩。 

（3）轮胎侧向力分析 

轮胎侧向力主要取决于垂向载荷及轮胎侧偏角，轮胎侧偏角为车轮回转平面与

车轮中心运动方向的夹角，前轮转向车辆的前后轮侧偏角如下： 
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 (2.10) 

在常用的轮胎模型中，Fiala 轮胎模型的分段特性使优化问题难以构建，“魔术公

式”轮胎模型各参数有明确物理意义，容易确定初值范围，为了便于辨识模型参数，

本文选择简化“魔术公式”轮胎模型进行轮胎侧向力与轮胎侧偏角间关系构建，如

式(2.11)。 

 ( )( )( )( )  sin arctan arctan f , ry zF F C B E B B             = − − − =  (2.11) 

式中，  为道路附着系数；C 为形状因子，决定输出曲线的基本形状； B 为刚度因

子； E 为曲率因子，控制曲线峰值处的曲率。魔术公式精度较高，可以很好地表现

轮胎的线性及非线性侧偏特性。 

2.3 驾驶员在环数据采集系统建立 

2.2 节中介绍本文构建的车辆及轮胎动力学模型，其中包含许多关键参数，例如，

车辆质量、轴距、魔术公式参数等。传统的参数获取方法，需要进行繁琐的测量与

轮胎试验，时间与人力成本高。本文针对难以精确测量的参数，利用驾驶员在环数

据采集系统采集控制量及状态量数据，采用数据驱动的方法拟合车辆模型。本节介

绍搭建的驾驶员在环数据采集系统。 

提出的动力学模型中，涉及的车辆参数如表 2.1 所示。表中，整车质量、轴距可

以通过简单测量获取，通过前、后轴垂向载荷比值可求质心与前、后轴间距离。地

面附着系数属于赛道信息，默认已知；形状因子在纵向力公式、侧向力公式间相差

较大，而前后轴的侧向力公式间形状因子与曲率因子相差不大，可默认为经验值。
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车辆绕 z 轴转动惯量半径 zR 与空气阻力系数 Dk 测量方式复杂，成本较高，质心离地

高度 h 与滚动阻力 RF 难以准确测量。车辆在转向过程中，左右车轮间的轴荷转移使

前后轴侧偏刚度下降，设定前后轴刚度因子 B 为待辨识参数以考虑此影响。综上所

述，选择 f r D R, , , , ,zB B R h k F 为待辨识参数。 

表 2.1 动力学模型参数 

符号 含义 单位 符号 含义 单位 

M  整车质量 kg  RF  滚动阻力 N  

fL  质心到前轴距离 m  C  形状因子 / 

rL  质心到后轴距离 m  B  刚度因子 / 

zR  绕 z 轴转动惯量半径 m  E  曲率因子 / 

  地面附着系数 / wR  车轮有效半径 m  

L  轴距 m  Dk  空气阻力系数 ( )
-2

-1N m s   

h  质心离地高度 m     

如图 2.5 为驾驶员在环数据采集系统架构。驾驶员通过场景显示器获取当前周围

环境状态，操纵方向盘、油门踏板、制动踏板产生控制信号，通过 CAN 通信传递至

dSPACE 硬件，硬件中的 CarSim 车辆与工况场景进行交互，显示在场景显示器上，

形成闭环。 

方向盘

油门踏板

制动踏板

信
号
调

理

驾驶模拟器 CarSim工况场景

CarSim车辆模型

数据采集器

dSPACE硬件

数据交互

控制信号

CAN

场景显示器

虚拟场景显示

驾驶员
驾驶员分析

驾驶员操纵

 

图 2.5 驾驶员在环数据采集系统架构 

驾驶模拟器选用 Logitech 公司的 G29 赛车驾驶套装，包括赛车方向盘，离合踏

板，油门踏板及制动踏板，由于本文不涉及换挡过程，不会使用离合踏板。dSPACE

板卡选择 DS2202，CarSim 车辆模型与 Simulink RTCAN 接口编译为.sdf 文件部署在

dSPACE 中，驾驶员在环数据采集系统实物图如图 2.6 所示。 

G29 赛车驾驶套装的方向盘可转动范围为 450 ，油门踏板与制动踏板信号范围
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均为 1 。CarSim 车辆模型的控制输入设置为方向盘转角、四轮驱动/制动力矩。信号

调理过程将油门踏板与制动踏板信号按照四轮平均分配原则转化为轮上力矩，以对

应 CarSim 车辆模型控制输入。 

场景显示器

方向盘

踏板

信号调理算法

试验管理软件
dSPACE ControlDesk

CAN卡

IO板卡
dSPACE硬件

驾驶员座椅

 

图 2.6 驾驶员在环数据采集系统 

2.4 空气阻力与滚动阻力参数辨识 

待辨识参数 f r D R, , , , ,zB B R h k F 中， Dk , RF 在车辆直线滑行时可单独辨识。 

2.4.1 辨识方法设计与数据采集处理 

当车辆无纵向、横向输入，即直线滑行行驶时，式(2.5)变为式(2.12)。 

 
2

R D
x

F k v
a

M

− −
=  (2.12) 

通过观测每帧数据中的纵向加速度，得到每帧数据的 2
R DF k v+ 。以车速 v为自变

量， 2
R DF k v+ 为二次函数，可以利用最小二乘方法辨识 Dk , RF 。辨识流程如图 2.7。 

模型辨识工况设计

原始数据采集 数据筛选处理

数据是否符合要求 最小二乘法辨识 辨识结果的验证评价

数据驱动的阻力模型

精度是否符合要求

否

否

是

是

 

图 2.7 最小二乘辨识流程 

模型辨识的工况设计为初始车速为 120km/h 的直线滑行，待车速降至 10km/h，

加速至 140km/h 后直线滑行。采集驾驶过程中的车速与纵向加速度序列作为原始数

据，剔除加速与转向的数据。如果数据符合滑行工况要求，设置初始速度为 120km/h

的滑行段为训练集，初始速度 140km/h 的滑行段为测试集。利用最小二乘法辨识 Dk ,  
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RF 后，使用测试集对模型精度进行评价，若符合要求则结束辨识，否则检查流程是

否有误并重新采集数据。 

利用驾驶员在环数据采集系统采集数据，采样频率为 20Hz，车辆选择 B 级跑车，

根据本研究目标车辆，修改其驱动系统为四轮驱动。车辆模型如图 2.8 所示，各项参

数如表 2.2 所示。 

 

图 2.8 B 级跑车模型 

表 2.2 B 级跑车车辆参数 

车辆参数 单位 数值 车辆参数 单位 数值 

整车质量 kg  1140 形状因子 / 1.3 

质心到前轴距离 m  1.165 曲率因子 / -1.5 

质心到后轴距离 m  1.165 车轮有效半径 m  0.298 

轴距 m  2.33 道路附着系数 / 0.85 

轮距 m  1.48    

剔除前轮转角 大于 0.1与驱动/制动力矩大于 1Nm 的数据，处理后的训练集与

测试集数据如图 2.9 所示。图中体现出车速与纵向加速度间的二次函数关系。 

 

图 2.9 数据集车速-加速度 

2.4.2 最小二乘参数辨识及结果验证 

根据式(2.12)可得理论公式(2.13)。 
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 2

R DxF F k v= − −  (2.13) 

训练集中包含车速序列  0 1, , , nv v v 与通过纵向加速度计算得到的纵向力序列

 0 1, , ,x x xnF F F 。构建最小二乘目标函数如下： 

 ( )
2

2

R D

1

n

xi i

i

J F F k v
=

 = + +
   (2.14) 

目标函数分别对 RF 与 Dk 求偏导： 

 

( )

( )

2

R D

1R

2 2

R D

1D

2 0

2 0

n

xi i

i

n

xi i i

i

J
F F k v

F

J
F F k v v

k

=

=


= + + =




= + + =






 (2.15) 

整理后，可得： 

 

4 2 2 2 2

1 1 1 1 1 1 1
R D2 2

4 2 4 2

1 1 1

,

n n n n n n n

xi i xi i i xi i xi i

i i i i i i i

n n n n

i i i i

i i i i i

F v F v v n F v F v

F k

n v v n v v

= = = = = = =

= = = =

− + − +

= =
   

− −   
   

      

   

 (2.16) 

代入训练集数据，得到 R 49.66NF = ， D 0.2921k = 。利用测试集验证辨识结果，

如图 2.10 所示。 

 

图 2.10 阻力项参数辨识结果验证 

辨识结果最大偏差为 5.58 N ，偏差均方根为 1.865 N ，最大相对误差小于 2%，

满足模型精度要求。 

2.5 基于贝叶斯优化的模型辨识 

2.4 节中辨识了空气阻力与滚动阻力参数，本节基于贝叶斯优化，辨识其余耦合

紧密的参数。 
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2.5.1 贝叶斯优化简介 

贝叶斯优化是一种基于概率模型对黑箱函数进行全局优化的方法，其解决的优

化问题表达式如下： 

 ( )max f
χ

χ
A

 (2.17) 

式中， χ为待优化量序列；A 为待优化量的取值范围； ( )f χ 为目标函数。式(2.17)

是一个无约束优化问题，常规求解方法包括梯度下降法、牛顿法，但这两种方法都

需要计算目标函数的导数，而实际目标函数可能很复杂，甚至未知明确的表达式，

这种情况下就需要应用贝叶斯优化求解优化问题。 

贝叶斯优化方法的核心是利用采样得到的先验知识指导全局最优的搜索。如图

2.11为贝叶斯优化流程图，由于目标函数未知或很复杂，所以需要利用采样点形成相

对简单的目标函数的近似函数，即代理函数。代理函数可以利用高斯过程、随机森

林、深度神经网络等方式进行构建，本文贝叶斯优化使用 Python 库中成熟的

Bayesian-optimization 优化包，其利用高斯过程构建代理函数。通过代理函数，可以

推测最大值可能出现的区域。随着采样点逐渐增多，代理函数的构建也更加准确，

直到达到最大迭代次数。 

未知函数  ( )f χ

( )f χ



采样点采样

( )f χ



迭代次数>限制值？

代理函数近似

( )f χ



上置信界采样函数选择采样点
( )g χnewχ

优化结果
*

χ

是

否

 

图 2.11 贝叶斯优化流程 

采样点是构建代理函数的关键，采样有两种思路，一种是利用现有的代理函数，

在高斯过程均值较大的区域进行局部开发，另一种是在未知的区域，即方差较大的

区域进行随机探索。过多的随机探索未能应用先验知识，导致优化过程收敛缓慢，

过多的利用已知信息进行局部开发则容易陷入局部最优。二者可通过设计采样函数

进行平衡，常用采样函数包括上置信界（Upper confidence bound，UCB）算法，概率

改善（Probability of improvement，PI）算法，期望改善（Expected improvement，EI）

算法，本文应用上置信界算法，其采样函数如下： 

 
( ) ( ) ( )UCB  = +χ χ χ  (2.18)
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式中， ( ) χ 为均值， ( ) χ 为方差， 为平衡系数， 越大，越倾向于随机探索，反

之倾向于局部开发，选择使 ( )UCB χ 最大的 χ作为下一次的采样点。 

2.5.2 动力学模型参数辨识方法设计 

贝叶斯优化相比最小二乘法、岭回归法、网格搜索法等参数辨识方法的优点在

于迭代次数少、速度快且针对非凸问题稳健。贝叶斯优化支持约束待优化变量范围，

可以利用车辆的先验知识约束待辨识参数，避免数据集的污染与扰动导致辨识结果

过于偏离实际。根据 2.3 节的分析，设定贝叶斯优化问题的待优化参数为

 f r, , ,zB B R h 。根据赛车行驶工况及贝叶斯优化原理，设计动力学模型参数辨识方法

如图 2.12 所示。 

模型辨识工况设计 原始数据采集 数据筛选处理

数据是否满足要求 随机探索优先的贝叶斯优化

是否多次搜索

未出现更优解
局部开发优先的贝叶斯优化辨识结果的验证评价

是否满足精度要求数据驱动的动力学模型

否 是

是 否

是 否

 

图 2.12 动力学模型参数辨识流程 

动力学模型可拆分为横、纵两部分，横向控制量为前轮转角 ，状态量为横摆

角速度 r ；纵向控制量为前、后轴力矩T ，其大于 0 为驱动，小于 0 为制动，状态量

为车速 v。横纵向间存在耦合关系，质心侧偏角  与横、纵向均相关。为了避免同一

赛道的数据导致过拟合，模型辨识数据的采集过程不设定具体赛道，而是由驾驶员

在边长 1 km的方形区域内随意驾驶，但车速分布要覆盖高低车速，左右转向的比例

要尽可能相等，且包含下述工况： 

（1）滑行直线行驶工况； 

（2）大、小加速度加减速直线行驶工况； 

（3）低速大曲率转向； 

（4）高速小曲率转向； 

（5）高速大曲率极端工况转向； 

（6）加减速与转向耦合工况； 

需要采集驾驶过程中的  f r, , , , ,v r T T  序列用于模型辨识，采集[ , ]x ya a 用于辅助

分析数据。采集的原始数据需要进行筛选处理，剔除通信延迟、驾驶失误导致的问
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题数据，以及极低车速的数据。对筛选处理后的数据进行数据分布分析，判断是否

满足动力学模型辨识要求，若不满足要求，需要进行原始数据补充。 

数据满足要求后，分为训练数据集与验证数据集，利用训练集首先进行随机探

索优先的贝叶斯优化，即采样函数中 取较大值，覆盖待辨识参数的优化范围，避免

后续陷入局部最优。在多次搜索均达到最大采样次数且未能搜索到更优解后，认为

此时的参数解处于全局最优或次优附近。减小 ，在参数解邻域进行局部开发，寻找

最优解。每次达到最大采样次数后，利用测试集验证辨识结果，若满足精度要求，

则停止辨识。 

2.5.3 数据的采集与处理 

高速极端驾驶过程中，会出现驾驶失误导致的车辆失稳，为避免数据污染，以

质心侧偏角绝对值大于 1.0rad 为依据剔除数据，车速低于 0.36km/h 的数据由于车速

过低，也进行剔除。 

对处理后的数据进行分布分析，如图 2.13 为训练集车速分布分析，车速分布覆

盖 0 到 140km/h，且分布比较均匀，符合模型辨识要求。 

 

图 2.13 训练集车速分布 

如图 2.14 为工况分布分析。左转向、直行、右转向的比例分别为 30%, 41%, 29%，

左右转向比例基本相同，符合模型辨识要求。 

 

图 2.14 训练工况分布 
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如图 2.15 为训练集横纵向加速度分布，训练集横向加速度基本覆盖整个摩擦圆

范围，符合模型辨识要求。 

 

图 2.15 训练集 G-G 图 

2.5.4 目标函数与参数约束设定 

贝叶斯优化的目标函数需要合理多维度地评价模型的准确性，设定目标函数如

下： 

 ( )
s

e e e e e1 1 1 1 1
0

( )
x y

n

v i r i i a x i a y i

i

f q v q r q q a q a 
=

= − + + + +χ  (2.19) 

式中， sn 为训练集的数据段数， vq  , rq 与 q 分别为车速、横摆角速度与质心侧偏角

的偏差惩罚权重， eiv , eir 与 ei 分别为第 i 段的模型预测车速、横摆角速度与质心侧偏

角和原始数据间的偏差序列； yaq 与
xaq 分别为横、纵向加速度惩罚权重， ex ia 与 ey ia

分别为第 i 段的动力学模型横、纵向加速度与原始数据间偏差序列。由于贝叶斯优化

目标为最大值，式(2.19)取相反数。目标函数迭代求和的逻辑如图 2.16 所示。 

第  段训练集i

s ?i n

当前参数目标函数

动力学模型

目标函数累加1i i= +

原始数据状态序列 0 0 0 0 0, , , , , , , , , ,x y N N N xN yN i
v r a a v r a a  
 

是

否 0 0 0 0 0, , , ,x y i
v r a a 
 

逐步递推
模型递推状态序列

0 0 0 0 0 sim
, , , , , , , , , ,x y N N N xN yN i

v r a a v r a a  
 

控制量序列
 f 0 r0 0 f 1 r 1 1, , , , , ,N N N i
T T T T − − −

偏差状态序列

e e e e e, , , ,x y i
v r a a 
   

图 2.16 目标函数迭代求和逻辑 

目标函数中，除了对动力学模型的状态量车速、横摆角速度、质心侧偏角的预
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测精度进行评价，也对中间过程状态 xa  , ya 的预测精度进行评价。目标函数中各项

参数如表 2.3 所示。 

表 2.3 目标函数参数 

参数 数值 参数 数值 

vq  2.0 
xaq  1.0 

rq  100.0 
yaq  1.0 

q  100.0   

根据经验可设定前、后轴魔术公式刚度因子的范围；车辆质心距前后轴距为

1.165m，车宽为 1.75m，车辆总高为 1.5m，车轮有效半径为 0.298m，以此为依据设

定绕 z 轴转动惯量半径与质心高度范围，最终待优化参数的约束设定如表 2.4 所示。 

表 2.4 待优化参数范围 

车辆参数 约束范围 车辆参数 约束范围 

fB  [9,20] zR  [0.8,1.7] 

rB  [9,20] h  [0.3,0.75] 

2.5.5 动力学模型辨识结果验证 

利用训练集数据依次进行随机探索优先与局部开发优先的贝叶斯优化，设定采

样函数中的平衡系数 分别为 10.0 与 0.1。优化过程目标函数迭代如图 2.17。最终优

化参数如表 2.5 所示。 

 

图 2.17 优化过程目标函数迭代 

表 2.5 模型辨识优化结果 

车辆参数 数值 单位 车辆参数 数值 单位 

fB  10.014 / zR  1.6 m  

rB  19.017 / h  0.3141 m  
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贝叶斯优化的参数辨识结果与实际车辆参数不一定相同，这是由于参数意义是

参数范围约束赋予的，优化只追求目标函数的最大化。辨识得到的模型在规划控制

中用于预测车辆动态。本节从以下两个角度分析验证辨识得到的动力学模型： 

（1）不同预测时域的模型精度对比 

规划与控制优化问题中，动力学模型需要预测未来一段时域内的车辆状态，不

同的预测时域，状态的预测偏差不同，规划控制的结果也不同。本文选取 0.1s，0.5s，

1s，4s 四种预测时域，利用滑动窗口的思想评价模型预测精度。如图 2.18 所示，设

置长度为 pN 的滑动窗口，以 1s 预测时域为例，采样步长为 0.05s，滑动窗口长度为

20。依次以每个采样状态量为滑动窗口的初始状态，以 0.05s 步长递推预测滑动窗口

终端状态，最后获得长度为 p 1n N− + 的预测序列。 

0x nx

0x
psimNx

动力学模型递推

1x
psim 1N +x

pn N−x
simnx

p psim sim 1 sim, , ,N N n+
 
 
x x x

 

图 2.18 滑动窗口模型预测思想 

评估指标采用标准化拟合指标H [74]对模型进行评价，H 定义如下： 

 2

2

100 1H

 −
 = −
 − 
 

γ γ

γ γ
 (2.20) 

式中， γ 为测量的状态量序列， γ̂ 为利用动力学模型递推得到的模拟状态量序列， γ

为测量序列的平均值。 100%H = 表示模型完美拟合实际车辆， 0%H = 表示模型拟

合的状态量序列等于测量数据的平均值，H 数值为负数，表示拟合效果不佳。 

除 H 外，以V 作为参数进行测量状态与模型模拟状态之间的相关性分析[75]，如

式(2.21)。 100%V = 表示模型能够完全解释测量状态序列的方差。由于硬件在环系统

不存在测量噪声，所以当模型精度足够高时，V 接近 100%。 

 
( )

( )

ˆvar
100 1

var
V

 −
= −  

 

γ γ

γ
 (2.21) 

不同预测时域下，整个验证数据集的各状态量实测数据与模拟数据间的相关性
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关系如图 2.19 所示。模型评价结果如表 2.6 所示。 

(a) 实际车速与模拟速度相关性 

 

 (c) 实际质心侧偏角与模拟质心侧偏角相关性 

 

(b) 实际横摆角速度与模拟横摆角速度相关性  

 

(d) 实际纵向加速度与模拟纵向加速度相关性

 

(e) 实际横向加速度与模拟横向加速度相关性 

图 2.19 不同预测时域测量状态与仿真状态间相关性 
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表 2.6 模型验证评价结果 

预测时域 车速 质心侧偏角 横摆角速度 纵向加速度 横向加速度 

 %H  %V  %H  %V  %H  %V  %H  %V  %H  %V  

0.1 s  99.8 99.99 96.1 99.8 92.9 99.5 86.09 98.11 90.4 99.1 

0.5 s  99.0 99.99 87.9 98.5 83.7 97.4 85.98 98.07 73.2 92.8 

1 s  98.0 99.96 75.5 94.0 81.8 96.7 85.87 98.03 64.5 87.4 

4 s  91.2 99.2 -15.2 -32.7 72.2 92.3 85.86 98.02 59.3 83.5 

随着预测时域增长，模型误差累积，模型对各项状态量的预测偏差增大，对测

量方差的解释性减弱，其中 0.1s的预测时域，可对 , ,v r  实现平均 96.23 % 的预测准

确度与 99.78 % 的相关性。预测时域增长后模型虽然无法准确预测，但能模拟出状态

量的整体趋势。横向相比纵向的预测偏差较大，是由于模型在简化与近似后，无法

准确模拟高速极端工况的失稳边界，在预测时域较长时局部会发生车辆失稳的预测。 

（2）与线性轮胎模型的精度对比 

以 0.1 s预测时域，对比辨识的动力学模型与线性轮胎动力学模型。线性轮胎动

力学模型相比本文构建的动力学模型，将式(2.11)修改为式(2.22)。 

  f , ry zF F C    = − =  (2.22) 

式中， aC  为前、后轴轮胎侧偏系数，线性轮胎动力学模型参数如表 2.7 所示，该参

数同样是通过贝叶斯优化辨识得到。 

表 2.7 线性轮胎动力学模型参数 

车辆参数 数值 

faC  12.00 

raC  16.7035 

在预测时域为 0.1 s时，整个验证数据集的各状态量实测数据与两种模型模拟数

据的相关性如图 2.20(a)所示，图 2.20(b)展示验证数据集内低横向加速度工况，即

0.4ya g 时，状态量实测数据与两种模型模拟数据的相关性。表 2.8 展示两种模型

的评价结果。 
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(a) 全部验证集下两种模型与实测数据的相关性对比 

 

(b) 低横向加速度工况下，两种模型与实测数据的相关性对比 

图 2.20 不同工况模型与实测数据相关性对比 

表 2.8 两种模型评价结果 

模型 工况 车速 质心侧偏角 横摆角速度 纵向加速度 横向加速度 

  %H  %V  %H  %V  %H  %V  %H  %V  %H  %V  

线性 
不限 ya   98.77 99.98 70.0 91.0 75.6 94.0 81.36 96.53 49.4 74.4 

0.4ya g  99.73 100 93.0 99.5 94.4 99.7 85.51 97.95 73.5 93.0 

非线性 
不限 ya   99.77 100 96.0 99.8 92.9 99.5 86.09 98.11 90.4 99.1 

0.4ya g  99.73 100 96.5 99.9 91.7 99.3 85.66 97.98 82.3 96.9 
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在 ya 较小，轮胎处于线性区时，两种模型的预测精度及对测量方差的解释性相

近，但当 ya 绝对值增大后，轮胎进入非线性区，式(2.22)在大侧偏角工况下对于横向

力的预测偏大，导致横摆角速度偏大，预测失准。以式(2.22)展示的线性轮胎模型更

适用于低横向加速度工况，并不适用于赛车工况，本文创建辨识的非线性动力学模

型在高横向加速度工况下的精度更高，可以认为搭建的车辆模型可以近似表现高横

向加速度工况下车辆的动力学特性。 

2.6 本章小结 

本章分析车辆与轮胎的运动特性及力学特性，构建规划、控制所需的运动学模

型与动力学模型，并设计模型参数离线辨识方法。主要工作如下： 

（1）进行合理假设，构建大地坐标系与道路坐标系下运动学模型，横纵向耦合

的三自由度车辆动力学模型及考虑轮胎力饱和的基于魔术公式的非线性轮胎模型。 

（2）建立驾驶员在环数据采集系统，采集车辆行驶数据。利用最小二乘法辨识

空气阻力与摩擦阻力，利用贝叶斯优化进行非线性模型的参数辨识。 

（3）利用验证数据集评价辨识的动力学模型，并与结合线性轮胎模型的车辆动

力学模型对比，验证了本章搭建辨识的模型可模拟轮胎处于线性区与非线性区时的

车辆动力学特性，该模型将用于后续规划与控制。  
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第3章  基于线性时变模型预测控制的运动控制器 

本章提出一种横纵向解耦的双层实时抗噪赛车运动控制架构；上层提出一种目

标路径点集的筛选方法，并设计纵向规划器计算目标纵向车速，对目标路径扩维；

下层设计考虑跟踪偏差软约束的线性时变模型预测控制器与基于 PID 的纵向车速跟

踪控制器。引入最小均方（Least Mean Square, LMS）状态估计器估计横向速度与横

摆角速度，提升控制器抗噪性。本章研究实现了赛车跟踪已知路径的高频运动控制，

并保证存在噪声情况下的控制器效能。本章研究结果仅用于暖胎圈循迹与第 4章扩展

采样安全集，并不用于跟踪第 4 章预测时域内的规划轨迹。 

3.1 运动控制系统架构设计 

从需求出发，本章设计的运动控制器需要满足以下几点要求： 

（1）可以独立跟踪整条赛道中心线，保证高速下跟踪精度； 

（2）实现高频控制，扩展采样安全集时快速完成单圈跟踪； 

（3）提升控制器抗噪性，以应用于实车； 

基于以上要求，设计运动控制系统架构如图 3.1 所示，其中 d 为道路宽度；  为

路况风险等级； in 为赛道原始路径点数量（包含首尾点）； tn 为路径点筛选器筛选后

路径点数量；
xve 为纵向车速跟踪偏差。 

路径点坐标 道路宽度 路况风险等级

赛道原始路径点集

路径点分段

计算代价函数

筛选路径点

上层路径点筛选器

ROS通信

车速序列

横摆角速度

横向速度

LMS状态估计器

参考点匹配

车速跟踪误差

信息预处理器

横摆角跟踪误差

横向跟踪误差

跟踪误差计算

车速限制 地面附着力限制

车速序列

上层纵向车速规划器

LTV-MPC路径跟踪控制器

非线性车辆模型

下层横向跟踪控制器

路径跟踪误差模型

线性时变模型

预测模型

 
i i i i0 0 0 0, , , , , , , ,n n n nX Y d X Y d  

 

 
t t t0 0 0, , , , , ,n n nX Y X Y  

 

 
t t t t0 0 0 0, , , , , , , ,x n n n nX Y v X Y v  

 

ˆ ˆ, , ,t t t ytX Y r v 
 

车速控制器

下层纵向车速控制器
xve

 
p p0 0 ˆ ˆ, , , , , , ,x N xN y nv v r v e s    

  

 f r,T T



, , ,t t t ytX Y r v 
 

运动控制器

 

图 3.1 双层架构车辆运动控制系统 

以赛道中心线路径作为初始路径点集，其包含各路径点坐标，道路宽度与路况

风险等级，上层路径点筛选器根据式(3.1)计算各路径点曲率并筛选路径点，式中，
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( ),i iX Y 为参考路径第 i 点坐标。 

 

( ) ( )

1 1

1 1

2 2

1 1

arctan arctani i i i

i i i i

i

i i i i

Y Y Y Y

X X X X

Y Y Y Y


+ −

+ −

− −

   − −
−   

− −   
=

− + −

 (3.1) 

筛选后的路径点集传入纵向车速规划器，纵向车速规划器同时接收通过话题传

入的上一圈车速序列或设定车速，结合地面附着力限制，得到各路径点目标车速加

入路径点集，传入信息预处理器。信息预处理器接收实时反馈的状态信息，并根据

位置信息进行参考点匹配，计算采样时刻跟踪误差传入下层控制器。下层控制器采

取横纵向解耦控制，为实现高精度跟踪并兼顾车辆机械条件约束，横向控制器使用

在线滚动求解带约束优化问题的模型预测控制，考虑到车辆本身多自由度耦合，而

直接使用非线性 MPC 难以高频控制，所以采用线性时变模型，横向控制器以前轮转

角作为控制量。纵向控制器采用增量式 PID 控制算法，输出前、后轴驱动/制动力矩。 

考虑后续实车传感器存在噪声，会引起跟踪振荡，在采样状态信息传入信息预

处理器前，设计状态估计器估计横向速度与横摆角速度，考虑计算复杂度、滤波效

果等，选用 LMS 算法滤去噪声。以下各节将介绍系统内各部分原理。 

3.2 路径点筛选器与纵向速度规划器 

本研究提出的双层运动控制架构的上层设计了路径点筛选器，制定代价函数，

评估各路径点所含信息重要程度，根据重要与否对路径点进行筛选，以提高路径信

息处理速度。设计简单逻辑的纵向速度规划器，避免因设定速度过高而失稳。 

3.2.1 路径点筛选器 

车辆跟踪路径时，路径点的密度会影响运动控制的效果，路径数据过多导致下

层信息预处理过程耗时长，影响控制实时性；路径数据稀疏导致路径信息缺失，跟

踪效果较差。所以需要在保留重要路径信息的前提下，剔除多余路径点。本节设计

路径点代价函数，用于评估各路径点所含信息的重要程度，以此为依据筛选路径点。 

定义路径点集合中第 i 个路径点的代价函数 iJ 如下： 

 
1

i i d i

i

J w w w
d

  = + +  (3.2) 

式中， w 为曲率因子； dw 为道路宽度因子；w 为路况风险因子。相比直线行驶，
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弯道行驶时车辆控制偏差导致的车辆横摆更易使控制器失效，所以保留更多大曲率

的路径点信息。车辆在较窄的路段行驶时，横摆或控制存在偏差会导致车辆靠近道

路边界，发生危险，所以宽度小的路径段密度更高，以提升控制效果。对于气候条

件，路面条件等因素，本研究归类为路况风险等级，其定义如表 3.1 所示。 

表 3.1 路况风险等级 

  风险等级描述   风险等级描述 

0 低风险 2 较高风险 

1 一般风险 3 高风险 

设原始路径点数量为 0n （去除首尾路径点），为提高筛选效率，采取分段方法。

将路径点集中每 sn 个点作为一组分段，根据式(3.2)计算各点代价函数，并求和得到

每个路径段的代价函数，将目标路径点数量按代价函数占比分配到各段，第 j 段分配

点的数量 jn 为： 

 
s o

t

1 1

k n n

j i i

i k i

n n J J
+

= + =

=    (3.3) 

各段根据分配点的数量等距离删点，加入起点与终点后形成筛选后点集，由于

存在向上取整问题，所以筛选后路径点集数量与 tn 不完全相同，但可忽略少数路径

点对处理速度的影响。由于曲率大，宽度窄，风险等级高的路段代价函数更大，占

比更高，分配的数量更多，路径点更密，可以减少关键信息损失，提高关键路段的

控制精度，降低危险程度。 

3.2.2 纵向速度规划器 

纵向速度规划器的目标为在安全行驶前提下最大化车速。由于暖胎圈循迹与采

样安全集扩展时均有外部传入的目标车速序列，所以速度规划器仅需计算避免车辆

失稳的车速上限。 

b fxF
b rxF

b fyF

b ryF

地面附着力不足

地面附着力充足

 

图 3.2 车辆弯道行驶地面附着力示意 
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轮胎是车辆与地面间的力传递媒介，车辆失稳与否取决于车辆所需轮胎力是否

超出地面所能提供的最大力。如图 3.2，若地面提供的附着力不足，根据式(2.3)，车

辆状态量变化慢，易偏出赛道。地面能提供的附着力极限取决于轮胎地面间附着系

数，附着力可分解为纵向力 bxF  与侧向力 byF  ，纵向力以车辆轴线方向向前为正，

横向力以垂直车轴向左为正，车辆稳定条件如下： 

 
b bx y M g   + F F  (3.4) 

式中，M 为前、后轴轮胎地面垂向质量，如式(3.5)所示，这里忽略加减速时前后轴

荷转移。  为地面附着系数；横纵向轮胎力可以近似为车辆横纵向惯性力按前后轴

荷比分配到前后轴，如式(3.6)。 

 
( )L L

M M
L





−
=  (3.5) 

 ( ) ( )2

b bx x y xMa L L L M v L L L   = − = −F F，  (3.6) 

在速度规划器设计过程中，存在简化考虑，且道路曲率不连续时，计算得到的

目标车速会发生阶跃，而实际车辆由于纵向加速度限制，车速无法快速下降，易发

生危险，所以需要引入安全系数 safeK ，虽然规划结果会相对保守，但由于该运动控

制器仅用于暖胎圈循迹与第 4 章采样安全集的扩展，所以可以接受。式(3.6)代入式

(3.4)后，化简如下： 

 ( ) ( )
22 2

safex xa v gK +   (3.7) 

不同加速度与不同曲率下，路面附着条件允许的最大车速如图 3.3 所示。 

 

图 3.3 加速度-曲率-车速关系 
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式(3.7)计算得到最大车速后，与设定最高车速或话题传入的上一圈车速取小值，

作为各路径点目标车速，路径点集从三维 , ,X Y  扩维到四维 , , , xX Y v 。 

在每一采样时刻，需要寻找当前状态在路径点集中对应的匹配点，计算此时横

纵向跟踪误差，并递推查找预测时域内匹配参考点，用于后续控制器设计。匹配点

本质是路径中距离当前状态位置的最近点，所以首先遍历路径点集，按式(3.8)计算

各路径点与当前位置间距离，查找最近点索引。 

 ( ) ( )
2 2

i i ie X X Y Y= − + −  (3.8) 

经筛选后的点集中各点间距离相对较大，为更精准查找最近点，在最近点前后

两路径点间以最近点为中间点进行线性插值，局部细化点集。由于在局部细化点集

中查找最近点是单极值的离散优化问题，所以采用黄金分割法[76]进行局部查找，局

部查找到最近点后计算纵向车速偏差、横向跟踪偏差与横摆角跟踪偏差，其中横向

跟踪偏差为最短距离在最近点的垂向方向投影。 

3.3 模型预测控制基础 

模型预测控制的基本思想是利用已有的模型、系统当前的状态和假定未来的控

制量去预测系统未来的输出，通过滚动地求解带约束优化问题来实现控制目的，具

有预测模型、滚动优化和反馈校正三个特点[43]57。本部分将从这三个特点展开介绍模

型预测控制理论。 

3.3.1 预测模型 

预测模型是控制器预测未来的基础。任何被控系统的变化都可以数学化为状态

量在状态空间中的状态转移，预测模型需要精准复现被控对象接受控制量后一段时

间内的状态轨线。其形式可以是线性微分方程、非线性微分方程、传递函数、差分

方程等参数模型，也可以是脉冲响应、阶跃响应模型等非参数模型。预测模型可以

根据被控对象的基础数学或物理原理进行构建，也可以采集状态量、控制量数据，

通过辨识或训练构建。 

无人车辆规划与运动控制领域所用到的模型预测控制器，以被控车辆系统作为

被控对象，在第 2章中，通过分析车辆运动学与动力学原理构建预测模型，利用采集

的数据辨识预测模型参数。而实际车辆是多因素耦合、复杂的动力学系统，无论是
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通过理论构建，还是利用数据辨识，预测模型与实际被控车辆间都会存在偏差，偏

差会随着时间的推移累计，所以预测时域不宜过长。 

模型预测控制是一种在线优化求解的控制算法，其对求解时间与收敛性要求较

高，复杂的预测模型提升预测精度的同时，也会使优化问题求解困难，导致控制器

求解时间增加，实时性降低，所以需要根据实际控制频率要求，对预测模型进行简

化。本研究中在有高频控制需求及优化问题复杂时，对预测模型进行了局部线性化

处理，以简化计算，提升实时性。 

3.3.2 滚动优化 

模型预测控制的优化过程是随时间的推移在线优化，反复进行的，每一步实现

的是静态优化，而全局是动态优化。传统最优控制仅建立单一时刻的状态转移方程，

当前状态 kx 在控制量 ku 的作用下，通过式(3.9)转移到状态 1k+x ，并利用状态反馈或

输出反馈等方式控制。 

 
( )

( )

,

,

k k k

k k k

f

g

=


=

x x u

y x u
 (3.9) 

模型预测控制则会建立预测时域内的状态转移方程，预测多步状态轨线，再通

过某一性能指标的最优，得到预测时域内的控制序列。如图 3.4 所示，𝑘为当前时刻，

控制器会在当前时刻状态量基础上，利用预测模型，预测系统在预测时域 p[ , ]k k N+

的输出，通过求解包含约束与目标函数的优化问题，得到控制时域  c,k k N+ 内的控

制序列，并施加控制序列中 k 时刻控制量。 

过去 将来

k 1k + c 1k N+ −
p 1k N+ −

1

2

3

4

5

1 测量状态轨线

2 参考状态轨线

3 预测状态轨线

4 预测控制量

5 已执行控制量

 

图 3.4 模型预测控制原理示意 
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3.3.3 反馈校正 

由于预测模型与实际系统间存在偏差，如果将控制序列全部作用于被控对象，

被控对象的实际状态轨线会与预测结果不同。为了防止模型偏差与环境噪声影响控

制效果，模型预测控制只将控制序列中本时刻的控制量作用到被控对象。下一个采

样时刻采集被控对象的实际输出，更新被控对象状态后，再进行新一轮的优化。反

馈校正保证模型预测控制闭环，使滚动优化不仅依赖模型准确性，还利用了实时反

馈的状态信息。 

除利用实时反馈的信息更新被控对象状态外，也可以利用采集的状态与预测状

态间的偏差训练模型，以对未来的误差做出预测或利用采集的输入输出在线辨识预

测模型。 

3.4 基于模型预测控制的横向路径跟踪控制器设计 

3.4.1 预测模型建立 

由于本章运动控制架构为横纵向解耦，所以横向模型预测控制器的预测模型结

合道路坐标系下运动学模型、横向二自由度单轨动力学模型与非线性魔术轮胎模型。

为满足高频控制要求，对搭建的非线性动力学模型进行局部线性化。 

3.4.1.1 横向二自由度单轨动力学模型 

横纵向解耦控制方案是业内广泛采用的控制方案，但其并不符合人类的驾驶方

式，首先根据第 2章动力学建模过程可知，车辆的横纵向高度耦合，尤其在大转角或

大纵向力情况下，而解耦控制下横纵向控制间仅通过状态变量进行交互；其次，很

多车辆控制约束条件是横纵向共同影响的，例如轮胎摩擦圆约束等，而横纵解耦控

制由于无法直接约束轮胎摩擦圆，总是过于保守或过于危险。而本章仍采用横纵向

解耦控制，主要考虑以下几点原因： 

（1）横纵向解耦可以减少横向优化问题的复杂度，实现快速求解； 

（2）横纵向解耦避免横、纵向目标函数权重间互相影响； 

（3）本章运动控制器仅用于暖胎圈循迹与采样安全集扩展。暖胎圈循迹过程车

速相对较低，采样安全集扩展过程的车速序列来自规划控制器，而规划控制器为横

纵向耦合。 
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如图 2.3，二自由度车辆动力学模型在三自由度车辆动力学模型基础上，忽略轮

胎纵向力，仅考虑横向、横摆自由度，以[ , ]yv r 为状态变量，如式(3.10) 

 

( )

( )

f r

f f r r

cos

cos

y y

y x

y y

z

F F
v v r

M

F L F L
r

I





+
= −

−
=

 (3.10) 

轮胎模型如式(2.11)，轮胎侧偏角  定义如式(2.10)。 

3.4.1.2 跟踪误差模型 

运动控制中横向控制器的目标是跟踪已知路径，评估跟踪效果的指标有横向偏

差 ns 与横摆角偏差 e ，其变化率在式(2.2)与式(3.11)基础上，可得如式(3.12)。 

 
cos

sin

x

y

v v

v v





=

=
 (3.11) 

 

( ) ( )

( ) ( )

cos sin

cos sin

1

n y x

x y

n

s v e v e

v e v e
e r

s

 

 

 


= +

−
= −

−

 (3.12) 

结合跟踪误差模型与二自由度单轨动力学模型，以横摆角速度、横向速度、横

摆角偏差与横向偏差为状态量 x ，即 [ , , , ]y nr v e s=x ，控制量为前轮转角 ，可得横

向模型预测控制器所需车辆跟踪系统状态空间表达式，如式(3.13)。  
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( )

( ) ( )

( ) ( )
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f r
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 
 
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  = =  
   −   −    −

 
+  

x  (3.13) 

3.4.1.3 线性时变动力学模型 

式(3.13)为非线性动力学模型，需使用非线性求解器。为满足高频控制要求，利

用雅可比矩阵，将非线性模型在每一采样时间近似为参考点处的线性展开，转化为

线性时变动力学模型。相比于线性车辆模型，线性时变模型在轮胎非线性段的准确

性更高。 
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对于本采样时刻预测时域中的第 k 步，将上一采样时刻计算的预测状态序列中的

1k + 步状态设为线性展开的参考状态 l l l l l[ , , , ]k yk k nkr v e s=x 。非线性模型在参考状态

线性展开如式(3.14)。 

 l l l l
l l l

l l

( , ) ( , )
( ) ( )k k k

f f 
 



 
= + − + −

 

x x
x x x x

x
 (3.14) 

式中， 4 4f 




x
R 与 4 1f



 


R 为非线性模型对状态量与控制量的偏导数，如式(3.15)，

其表达式繁琐，本研究使用数学软件进行计算。线性化模型经欧拉离散化如式(3.16)。

欧拉离散存在误差，所以时间步长dt 不应过大。 
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3.4.2 目标函数设计 

建立预测模型后，需要设计优化问题的目标函数，横向路径跟踪控制的目标是

使无人驾驶车辆精准跟踪路径，且跟踪过程中行驶稳定。道路坐标系下，路径跟踪

精确度通过横向偏差 ns 与横摆角偏差 e 评估，因此将其考虑在目标函数中。为避免

横向速度过大导致车辆失稳，将横向速度 yv 也列入目标函数，以限制其绝对值。在

保证跟踪期望轨迹的同时，要尽可能减少能量消耗，在目标函数中也需要考虑前轮

转角 。惩罚前轮转角也可以避免车轮大角度摆振，影响行驶安全与轮胎寿命。此

外，本研究在约束横向偏差与横摆角偏差时进行软约束处理，所以目标函数中也要

加入松弛因子项。 t 时刻的目标函数如下： 

 
p c
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1 0

( ) ( )
y n s n en

N N

v y t k t e t k t n t k t s t k t e t k t t k t

k k

J t q v q e q s q q q
 

     
− −

+ + + + + +

= =

= + + + + +   (3.17) 
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式中， yvq  , eq
 与 nsq 分别为横向速度、横摆角偏差与横向偏差权重； e

  , 
ns 为约束

松弛因子； sn
q  , e

q


 为约束松弛量权重； q 为转角权重。 sn
q  , e

q


 远大于其它权重

以使横向偏差与横摆偏差约束生效。其余权重间， q  , eq
 与 nsq 取值更大， yvq 取值

较小，因为对前轮转角的惩罚与约束也可以实现 yv 的限制，限制跟踪偏差与避免车

轮大幅度摆振更为重要。 

3.4.3 约束条件设计 

MPC 相比于经典控制算法，其显著优势是 MPC 求解得到的控制序列与预测状态

序列均符合构建的约束条件。路径跟踪问题的约束首先考虑执行器的限制，车辆的

转向机械结构存在限位，需要对控制时域内的前轮转角进行幅值限制，避免机械损

坏，如式(3.18)。 

 max | max c, 0, , 1t k t k N  +−   = −  (3.18) 

除转角幅值外，转角变化率过大也会导致转向结构损坏，并且高速行驶过程中

转向过快影响行驶稳定性，所以需要限制前轮转角变化率  的幅值，如式(3.19)。 

 
max | 1 max
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, 1, , 1

t k t t

t k t t k t
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   
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+ −
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−  −   =

−  −   = −
 (3.19) 

虽然在目标函数中设置了横向偏差与横摆角偏差项，但为使车辆在轨迹跟踪过

程中更贴合参考轨迹，以及避免车辆行驶出道路边界，需要对横摆角偏差与横向偏

差进行约束。由于实车存在噪声、干扰及数值误差，对状态量进行硬约束没有意义，

约束过硬反而会影响优化问题的求解速度与成功率。所以在偏差约束中采用软约束，

如式(3.20)，(3.21)。 

 min , | , | max , | p, 1, , 1
n nn s t k t n t k t n s t k ts s s k N + + +−   − = −  (3.20) 

 min , | , | max , | p, 1, , 1e t k t t k t e t k te e e k N
    + + +−   − = −  (3.21) 

由于跟踪偏差约束值 minns 远小于单侧道路边界，且目标函数中松弛因子的权重

大，软化约束并不会造成危险。此外，预测模型与优化问题状态量初值以等式约束

形式表达，如式(3.22), (3.23)。 

 
c| 1| 1| p c | -1|d , 1, , 1, if ,t k t t k t t k t t k t t N tt k N k N  + + − + − + += + = −  =x x x  (3.22) 

 |t t t=x x  (3.23) 
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在整个预测时域中，通常前几对控制量对预测的输出行为影响更大。为减少待

求解维度，提升计算速度，控制时域常小于预测时域，超出控制时域的控制量沿用

c 1t N+ − 时刻控制量，如图 3.4 中预测控制量折线所示。根据目标函数与约束条件构

建约束优化问题如下： 
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(3.24) 

3.4.4 优化求解处理 

3.4.2、3.4.3 两小节中设计了模型预测优化问题的目标函数与约束条件，本小节

将转化优化问题，以适配求解器进行优化求解。由于目标函数与约束函数均为凸函

数，且等式约束均为仿射函数，构建的优化问题为凸优化问题。目标函数为二次型

函数的组合，因此可以将该优化问题转化为二次规划问题（Quadratic Programming, 

QP），选用算子分裂二次规划器（Operator Splitting Quadratic Program，OSQP）求解

该问题，OSQP 内部优化方法为交替方向乘子法，其标准形式如下： 

 

T T

c

1
min 

2

s.t.

+

 

ξ Pξ q ξ

L A ξ U

 (3.25) 

式中， P  , q 为权重系数矩阵； cA 为约束系数矩阵； L  , U 分别为约束条件的上、下

界矩阵。 

将 MPC 优化问题转化为 OSQP 标准形式分为两种方法，第一种是稀疏法，将预

测时域内状态量、松弛因子与控制时域内控制量作为求解变量 ξ，如式(3.26)。 

 
p c p p

T

| -1| | 1| , | , 1| , | , 1|, , , , , , , , , , ,
n nt t t N t t t t N t e t t e t N t s t t s t N t 

     + − + − + −
 =
 +ξ x x  (3.26) 

这种方法的预测模型与初值约束单独作为约束矩阵的一部分，构建的矩阵 P 与
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约束系数矩阵 cA 通常为稀疏矩阵，需要利用稀疏二次规划求解器求解。第二种方法

为密集法，其求解变量 ξ仅为控制时域内控制量与统一松弛因子，如式(3.27)。 

 
c

T

| 1|, , , ,
nt t t N t e s

   + −
 =
 

ξ  (3.27) 

密集法中，预测时域内状态量通过预测模型与初始状态量递推表示，约束矩阵

仅包含状态量与控制量的不等式约束。两种方法中，稀疏法更易添加动态约束，并

适用于长预测时域，所以本研究采用稀疏法进行 OSQP 接口适配。针对式(3.26)，目

标函数可转化为： 
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式中，Q , R , 
e
R , 

sn
R 分别为状态量、控制量、松弛因子权重矩阵： 
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约束条件分为等式约束与不等式约束，等式约束根据式(3.22), 式(3.23)构建矩阵

ceqA  , eqL 与 eqU 如式(3.30), 式(3.31)所示，其中上、下界矩阵 eqL  , eqU 相同，
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
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x
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

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
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





(3.30) 

 

l l l

l l

l l l

l l

d

d

t

eq eq

f f
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f f
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





 
 
   − + +    
 = =
 
 
   − + +     

x

x x
x

L U

x x
x

 (3.31) 

不等式约束中，状态量软约束根据式(3.20), 式(3.21)构建 cineqxA , ineqxL 与 ineqxU 如
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式(3.32), 式(3.33)所示，
( )p p c p2 4 2

cineq

N N N N + +
xA R , 

p2 1

ineq

N 
xL R , 

p2 1

ineq

N 
xU R 。 

 

c p

c 1

c

c 1

0 0 1 0
, 1, , 1

0 0 0 1

0 0 0 | 0 0 | 0 0

0 0 | 0 0 | 0 0

0 | |

0 0 | 0 0 | 0 0
p

ineq i

ineq

ineq

ineq N

i N

−

  
= = −  
 

  
  
  =
  
  
   

x

x

x

x

A

I

A I
A

A I

  (3.32) 

 

min max

min max

ineq ineq

min max

min max

,
n n

n n

e e

e e

s s

s s

 

 

   
   
   
   

= =   
   
   
   
      

x x
L U  (3.33) 

控制量约束根据式(3.18)构建 cineqA  , ineqL 与 ineqU 如式(3.34), 式(3.35)所示，
( )c p c p4 2

cineq

N N N N



 + +
A R , c 1

ineq
N




L R , c 1
ineq

N



U R 。 

  c 0 | | 0ineq =A I   (3.34) 

 

max max

ineq ineq

max max

, 

 

 

−   
   

= =
   
   −   

L U  (3.35) 

控制量变化率根据式(3.19)构建 cineq A  , ineq L  , ineq U 如式(3.36), 式(3.37)所示，
( )c p c p4 2

cineq

N N N N



 + +

 A R , c 1
ineq

N



 L R , c 1

ineq
N




 U R 。 

 c

0 0 | 1 0 0 | 0 0
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| |

0 0 | 0 1 1 | 0 0

ineq 

 
 

−
 =
 
 

− 

A   (3.36) 

 

1 max 1 max
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,
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 
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 

 

− −

 

− +    
   

− 
   = =
   
   

−    

L U  (3.37) 

最终二次规划问题约束如式(3.38)，
( ) ( )p c p c p4 2 4 2

c

N N N N N+  + +
A R  ,

( )p c4 2 1N N+ 
L R  , 

( )p c4 2 1N N+ 
U R 。 
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  (3.38) 

将 MPC 问题转化为标准形式后，调用 OSQP 求解器优化得到最优序列，并取第

一帧控制量作为控制输出，最优序列中也包含预测时域内的状态序列，用于下一采

样时刻的参考状态构建。 

3.5 纵向车速跟踪控制器与 LMS 状态估计器设计 

3.5.1 PID 纵向控制器 

纵向控制器接收信息预处理器传递的实时车速偏差反馈
xve ，采用增量式 PID 进

行控制，算法公式如下： 

 ( ) ( ), , 1 , , , 1 , 22
x x x x x xP v t v t I v t D v t v t v tT e e e e e e   − − − = − + + − +   (3.39) 

式中， P , I 与 D 分别为比例、积分、微分系数。增量式 PID 控制器仅需要前后三

次测量的车速偏差值，计算量降低，且受过去误差影响较小。第一帧采样时刻计算

时，设置 , 1xv te −  , , 2xv te − 为 0。为防止车轮瞬时力矩过大导致车辆损坏或失稳，对输出

的力矩控制量进行限幅，如式(3.40)。 

 ( )( )min max 1max ,min ,t t tT T T T T  −= +   (3.40) 

式中， minT 与 maxT 根据车辆动力及轮胎摩擦圆约束计算，如式(3.41)， p minT  , p maxT 为

轮上制动、驱动力矩限制。 

 

( ) ( )

( ) ( )

22 2

min pmin

22 2

max pmax

max ,

min ,

x

x

T T M g v

T T M g v





 

 

  
= − −  

  

  
= −  

  

  (3.41) 

3.5.2 LMS 状态估计器 

本研究基于硬件在环仿真系统进行控制器开发，可以准确测量状态量，但受限

于成本等因素，实车传感器返回的状态会混杂噪声，直接应用于横纵向控制器易造

成跟踪偏差过大，车辆振荡甚至失稳，所以需要对状态进行估计以提升控制器的抗
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噪性能。 

本研究利用 LMS 状态估计器估计车辆横摆角速度与横向速度，其可以在前一时

刻的估计器参数的基础上，自适应地调节参数，以适应噪声随时间变化。LMS 状态

估计器思想为建立包含时变误差补偿的车辆动力学模型用于预测状态，如式(3.42)。 

 1 1 1
ˆ

t t t tu− − −= + +x Ax B Ed   (3.42) 

式中， [ , ]t yr v=x 为 t 时刻模型预测值； ˆ ˆ ˆ[ , ]t yr v=x 为 t 时刻估计状态； A  , B 为系统

矩阵与输入矩阵，如式(3.43)； E 为正则化矩阵； d 为时变的误差补偿，用于补偿模

型与真实车辆间的偏差。 

 

lf lr lf lf lr lr lf

2 2
lf lff lf lr lr lf lf lr lr

2 2 2 2 2

, = ,
22 2 2 2

x

x x

zz x z x

C C C L C L Cv
Mv Mv M

L CL C L C L C L C

II v I v

+ −   − − −   
   
 − +  
− −     

A B   (3.43) 

式中， lC  为前、后轴侧偏刚度。通过式(3.44)可以计算得到 t 时刻模型与观测值间偏

差 te 。 

 t t t= −e x x   (3.44) 

式中， [ , ]t yr v=x 为传感器测量值。以偏差 te 的均方值最小作为最优的统计准则，定

义代价函数如下： 

 ( )TE t tJ = e e   (3.45) 

利用最速下降法，求解代价函数对模型补偿的偏导数如下： 

 
T2 t

J
= −


E e

d
  (3.46) 

则模型补偿更新如下： 

 T

1 2t t t−= +d d E e   (3.47) 

式中， 为梯度下降步长。利用更新后的系统估计 t 时刻状态如下： 

 1 1
ˆ ˆ

t t t t− −= + +x Ax Bu Ed   (3.48) 

综上所示， LMS 状态估计器估计横向速度与横摆角速度算法框架如图 3.5。 
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更新后动力学系统

1 1
ˆ ˆ

t t t t− −= + +x Ax Bu Ed

1t t= +

估计动力学系统

1 1 1
ˆ

t t t t− − −= + +x Ax Bu Ed

模型偏差校正
T

1 2t t t−= +d d E e

未知真实系统

( )1 1,t t tf − −=x x u

ˆ
tx

输出

传感器噪声

tx

tx
tx

te

 

图 3.5 LMS 状态估计器算法框架 

梯度下降步长 数值越大，模型收敛到真实观测值的速度越快，但会受到噪声

影响；数值越小受噪声影响越小，其数值根据传感器噪声设计。 

3.6 本章小结 

本章针对赛车已知轨迹的高频运动控制进行了下述研究与工作： 

（1）分析暖胎圈循迹与后续采样安全集扩展对运动控制器的需求，并根据需求

设计双层架构； 

（2）设计上层路径点筛选器与纵向规划器，提升预处理速度并对目标路径扩维； 

（3）研究基于线性时变模型预测控制的考虑跟踪偏差软约束的横向模型预测控

制器与纵向增量式 PID 控制器； 

（4）引入 LMS 状态估计器，滤除状态信号中的噪声，提升算法抗噪性。 
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第4章  基于采样安全集的赛车模型预测规划控制器 

本章针对暖胎圈完成后的赛车迭代工况，提出无参考的基于采样安全集的赛车

模型预测规划控制一体式架构，即改进的基于学习的 MPC 算法（Improved-Learning 

MPC，I-LearningMPC）。去除传统规划目标函数中对偏移参考线的惩罚，避免其影

响圈速。利用历史圈输入、状态数据形成的安全集，构建模型预测控制器的终端约

束与终端目标函数，保证可行性及赛车圈速的不断提升。此外，针对数据存储空间

与学习效果间的矛盾，基于第 2 章非线性车辆模型与第 3 章运动控制器设计采样安全

集扩展模块。针对信号延迟问题与模型失配问题设计延迟补偿模块与在线模型校正

模块。 

4.1 赛车迭代问题分析及架构设计 

本节将对赛车迭代问题的目标、难点进行分析，并提出解决此类问题的架构。 

4.1.1 赛车迭代问题分析 

赛车迭代问题是指赛车在指定封闭赛道内，循环完成单圈跑动。其与日常车辆

行驶的主要区别在于，赛道首尾相接且每圈的任务目标相同。赛车圈速取决于以下

因素，首先是车速，车速越高，圈速越小，但高车速对车辆动力性能、可靠性均提

出较高要求，相同曲率弯道下车速越高，车辆所需横向力越大，而横向力主要通过

地面提供，车队会采用热熔胎提升赛车轮胎抓地力，赛会官方也提供暖胎圈供车手

提升轮胎温度。 除车速外，赛车走线也是影响圈速的重要因素，赛道宽度远大于赛

车宽度，不同赛车手对同一条赛道的赛道线设计也会不同，但目标都是减小弯道曲

率，提升弯道车速。 

赛车迭代问题的规划控制存在以下挑战，首先，赛车动力学特性复杂且时变，

因此基于模型的规划控制器存在参数辨识建模误差与未建模动态等模型失配问题；

其次，赛车长时间处于轮胎非线性区，需要利用非线性模型保证规划准确性；赛车

工况极限，要求实时规划控制且车辆执行器响应快。 

4.1.2 赛车迭代规划控制系统设计 

根据 1.2.3 与 4.1.1 节分析，设计了逻辑架构如图 4.1 所示的一体式规划控制器。 
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采样安全集

线性时变MPC优化

采样安全集扩展模块在线模型校正模块

第3章运动控制器第2章非线性车辆模型

信号延迟补偿模块

规
划
控
制

器

离线模型

虚拟车辆

控制虚拟车辆

虚拟车辆数据

真实车辆数据

高斯过程输入输出数据

 f r, ,T T 

补偿后状态状态量与底盘反馈控制量

 f r, , , , , , , ,v rv r T T e e e    

 f r, , , , , , , ,X Y v r T T  

规划控制器输出控制量

 f r, , , , , , , , ,X Y s v r T T   

校
正
后
模
型 终端项

 

图 4.1 赛车迭代规划控制器逻辑架构 

该规划控制器充分利用赛车迭代问题的数据优势，其主体利用线性时变模型作

为预测模型，结合目标函数与约束构造规划控制的模型预测优化问题，调用求解器

求解得到控制量，作用于实际车辆。 

真实车辆数据发送到采样安全集扩展模块，当判断真实车辆行驶迭代一圈后，

扩展模块将整圈车速根据位置坐标匹配到赛道中线路点，形成离线参考轨迹。利用

第 3章运动控制器控制虚拟车辆模型跟踪参考轨迹，完成一圈跟踪后，输出状态量序

列作为扩展安全集。采样安全集模块融合虚拟车辆数据与真实车辆数据后，用于线

性时变 MPC 优化问题终端项。 

针对通信延迟问题，设计信号补偿模块，接收优化问题输出控制量与底盘反馈

控制量，辨识延迟帧数后利用车辆模型对真实车辆状态量进行延迟补偿，补偿后的

状态作为优化问题状态初值。 

针对模型失配问题，设计基于高斯过程回归的在线校正模块，利用真实车辆状

态量、控制量与模型预测误差构成数据对，实时更新高斯过程数据库。安全集扩展

模块与信号延迟补偿模块会向在线校正模块申请服务，发送实时状态量与控制量，

接收返回的车辆模型误差，对车辆模型进行校正。 

4.2 采样安全集定义 

本节介绍采样安全集相关定义，并分析采样安全集在迭代 MPC 问题中的意义与

凸化处理。 

4.2.1 采样安全集相关定义 

在介绍采样安全集的定义前，首先介绍控制不变集等相关定义。 
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定义 4.1：若一个集合 M X ，针对系统 ( )1 ,t t tf+ =x x u ，满足 t t → x uM U  :

( ),t tf x u M，则集合M称为控制不变集。 

定义中，集合X 与集合U 分别为状态量 tx 与控制量 tu 的定义域。对于已知状态

集合S，存在如下集合定义： 

定义 4.2：对于已知状态集合S，定义 ( ) ( )1K Pre=S S X为集合S的一步可控集。其

中 ( ) ( ) Pre : , ,n
t t t tf   x u x uS R U  S 。 

该定义可通过图 4.2 进行理解，图中蓝色区域为状态量定义域X 与 ( )Pre S 的交集，

存在控制量 tu 使 ( )Pre S 状态集合转移到S。以此类推， j 步可控集如下： 

X
( )Pre S

( )1K S

S
tu

 

图 4.2 一步可控集 

定义 4.3：定义已知状态集合 S 的第 j 步可控集 ( ) ( )( )1K Pre Kj j−S S X ，其中

( )0K =S S。 

X
( )Pre S

( )1K S

Stu

X
( )( )1Pre K S

( )2K S

tu

X
( )( )1Pre K j− S

( )K j S
 

图 4.3 j步可控集 

如图 4.3，存在 j 步控制量使第 j 步可控集 ( )K j S 转移到状态集合S 。根据定义

可知，可控集序列 ( ) ( ) ( )0 1K ,K , ,K j
 
 S S S 均存在控制量序列，可转移到状态集合

S，因此定义集合S的最大可控集如下： 

定义 4.4：已知目标状态集合 S X，定义最大可控集为所有 j 步可控集的并集。 

定义中所有 j 步可控集对应的不同的控制量序列u，只要可以将状态量转移到目

标状态集合S，均包含其中。在最大可控集的基础上，我们可以对目标状态集合进行

进一步限制，给出集合S的最大稳定集定义： 

定义 4.5：针对一个给定的控制不变集 S X，最大稳定集为所有 j 步可控集的并集。 

根据上述定义，在赛车迭代工况中，以赛车到达终点线状态作为最终状态，如

果状态中仅考虑 X  , Y 坐标，最终状态为控制不变集，那么本圈的过程状态为最终状

态最大稳定集的子集。若状态中考虑 v  , r  ,  等状态量且不为 0，则最终状态不为控

制不变集，本圈的过程状态为最终状态最大可控集的子集。因此给出赛车迭代工况
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的采样安全集的定义： 

定义 4.6：定义采样安全集SS 为所有能将最终状态控制到终点线的迭代中的状态并集。

第 j 圈采集的采样安全集定义为 j
SS 。 

根据定义，随着赛车圈数增加，采样安全集会不断增大。采样安全集为最大可

控集的子集，其中所有状态均能在控制序列下到达终点线。 

4.2.2 采样安全集在迭代 MPC 问题中的意义 

本节将从 MPC 原理上阐述采样安全集在迭代 MPC 问题中的意义。以赛车迭代

最短耗时优化问题为例，其目标为赛车两次经过终点线间耗时最短，可定义优化问

题如下： 
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( )
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 (4.1) 

式中， jt 为第 j 圈总步数， tx 为当前状态， Sx 为终点状态。 ( ),k kh x u 除终点状态为

0 外，均定义为 1。该优化问题约束起始状态与终点状态，预测时域不固定，终端约

束小，难以求解。通过采样安全集，可以将上述优化问题转化如式(4.2)。 
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 (4.2) 

由于采样安全集为终点状态的最大可控集，将模型预测的终端状态约束在采样

安全集中，可以保证存在控制序列，使车辆行驶到终点。终端函数 1jQ − 为终端状态

到终点状态的步数，其与采样安全集中的状态点映射。采样安全集将长时域甚至无

限时域缩短为有限短时域，相比于式(4.1)，式(4.2)终端约束的范围更大，求解失败的

概率更低。 
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4.2.3 采样安全集凸化处理 

根据定义可知， 1j−
SS 为前 1j − 圈构建的采样安全集，是离散点集合。这导致终

端约束为非凸约束，无法利用凸优化求解器求解，需要对采样安全集进行凸化处理。 

本研究利用凸包概念进行凸化处理，凸采样安全集CS 定义如下： 

 ( )
1 1

1 1 1

1 1

Conv : 0, 1,

j j

j j j

i i i i i

i i

  

− −

− − −

= =

= =  =  
SS SS

CS SS SSx x  (4.3) 

式中， 1j−
SS 为采样安全集中总点数； i 为各点权重； ix 为各点状态量。凸安全集

为采样安全集中各点加权和，权重和为 1。终端函数相对应凸化如式(4.4)所示，为对

应各点到终点步数的加权和。 

 ( )
1 1

1 1

1 1

Conv : 0, 1

j j

j j

i i i i

i i

P Q Q  

− −

− −

= =

= =  = 
SS SS

 (4.4) 

以二维状态空间为例，凸采样安全集如图 4.4 所示。 

A

B

A

B

直线工况

弯道工况

 

图 4.4 凸采样安全集示意图 

图中阴影部分为离散点形成的凸采样安全集。可以发现，凸采样安全集扩大了

采样安全集范围，甚至在弯道工况下会侵入道路边界外，所以凸化处理后的安全集

从原理上已不属于终点状态的最大可控集。但其仍可作为终端约束，因为凸化后的

终端函数仍可以补偿目标函数中从终端点 pt N+ 到赛道终点 jt 的步数，加权后处于车

道范围内的点的终端函数，仍能体现到终点的距离远近，例如图中点 A终端函数大

于点B 。 

同一圈离散点中越靠近终点的终端函数越小，且随着圈速提升，不同圈近似坐

标位置的离散点的终端函数也会递减，目标函数的梯度会引导权重倾向高速及靠近

终点的点。 
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4.3 采样安全集构建与扩展 

在介绍优化问题前，首先在本节介绍初始采样安全集的构建与实时采样安全集

的扩展。由于赛道首尾相接，经过终点时的道路坐标系运动学模型 s 不连续，本研

究选择状态量为  , , , , ,X Y v r =x ，控制量为  f r, ,T T =u 。 

根据 4.2节可知，第 j 圈使用的采样安全集合 1j−
SS 中包含前 1j − 圈采集的所有状

态点。数据点数量会随着迭代增多，导致优化问题的变量维度增多，求解时间增长。

所以需要简化采样安全集，减少其中数据点数量。 

在赛车迭代过程中，平均圈速不断提升，采集时间较早的数据所占权重较小，

可以实时更新采样安全集，仅保留最新两圈的状态数据点，以减少优化问题维度。 

4.3.1 初始采样安全集构建 

根据 4.1 节分析，赛车在正式比赛前，会进行限速的暖胎圈，其目的首先是使轮

胎处于最佳温度范围，在比赛中获得更好的抓地力；其次是在暖胎圈中可以确认赛

车状况与赛道状况。本研究利用暖胎圈过程进行初始采样安全集构建，其架构如图

4.5 所示。 

赛道中心线路径点

运动控制器

数据点采样

运动规划控制器 
0 0 0 00 0 0 0, , , , , , , ,n n n nX Y d X Y d  

 

 f r, ,T T 
, , , , ,x yX Y v r v 

 

, , , , ,x yX Y v r v 
 

 f r, , , , , , , , ,X Y s v r T T   

 

图 4.5 初始采样安全集构建架构 

暖胎圈过程中，利用第 3章提出的运动控制器横向跟踪赛道中心线路径，纵向跟

踪暖胎圈限速。运动控制器输出控制量  f r, ,T T  ，通过话题发送至车辆执行器，车

辆实时反馈状态量话题 [ , , , , , ]x yX Y v r v 。数据点采样器实时接收控制量与状态量，

经处理后通过话题发送至基于模型预测的运动规划控制器。 

每次采样后，若判断当前采样时刻的纵向距离 s 小于上一采样时刻，说明经过

终点，完成暖胎圈跑动，切换运动控制器为模型预测规划控制器。模型预测规划控

制器利用接收的数据构造初始采样安全集，并计算各点的惩罚函数，以终点惩罚数

值为 0，反向遍历，每个点递增 1，直到起点。 
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4.3.2 采样安全集扩展 

在规划控制车辆运动时，每时刻求解得到控制量后，当前时刻状态量与控制量

 f r, , , , , , , , ,X Y s v r T T    会存入本圈安全集。当到达终点完成本圈后，反向遍历计

算各点惩罚函数，将本圈安全集加入历史采样安全集，并删除时间戳最早的一圈安

全集数据，实现采样安全集的更新。 

采样安全集的实时更新虽然可以减少优化问题维度，但存在如下问题。随着圈

数提升，迭代优化后的车辆会逐渐在弯道中的某一部分，紧贴车道内侧边界行驶，

如果仅包括最近两圈的历史采样安全集，会出现如图 4.6 所示的凸安全集。 弯道工况

 

图 4.6 多圈迭代后凸安全集示意 

图中橘黄色点与蓝色点为最近两圈的历史采样安全集，橘黄色阴影部分为可行

的凸安全集，蓝色阴影部分为凸安全集中处于道路边界外的部分。可以发现，作为

终端约束的可行凸安全集范围很小，此时优化问题求解时间增长，甚至求解失败，

车辆也会出现横摆振荡。所以需要扩展历史采样安全集，在不增大数据存储空间的

前提下，保证可行凸安全集范围。 

本研究以高精度非线性动力学模型作为虚拟车辆代替实际车辆为主要思想，构

建如图 4.7 的采样安全集扩展架构。 

运动规划控制优化问题

采样安全集实际部分

状态收集器

真实车辆是否完成整圈

样条曲线构建s v −

运动控制器

虚拟车辆

虚拟车辆是否完成整圈

采样安全集扩展部分

 , ,X Y v

 ,s v

是

否

 f r, ,T T 

是

否

 f r, ,T T 

初始采样安全集

 f r, , , , , , , , ,X Y s v r T T   

 

图 4.7 采样安全集扩展架构 
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状态收集器实时采集真实车辆的 X , Y 坐标、车速信息，并计算 s 。当判断真实

车辆完成一整圈时，利用样条曲线拟合整圈的 s v − 序列。将第 2 章辨识得到的非线

性车辆动力学模型作为虚拟车辆，利用第 3章提出的运动控制器控制虚拟车辆，以样

条曲线拟合的车速跟踪赛道中心线路径，并采集状态构建采样安全集，至虚拟车辆

完成一整圈。组合虚拟车辆单圈采样安全集与真实车辆最新圈的采样安全集，如图

4.8，扩展凸安全集空间。 

 

图 4.8 扩展后凸安全集 

图中，橘黄色点为真实车辆最新圈的采样安全集，蓝色点为虚拟车辆采集的扩

展安全集。橘黄色阴影的可行凸安全集范围相比图 4.6 增加。由于非线性动力学模型

精度高，与真实车辆动力学特性相近，可理解为真实车辆同时完成两条轨迹。真实

车辆每完成一圈，扩展节点就会更新 s v − 样条曲线，并从起点开始完成一圈离线跟

踪，所以随着真实车辆的车速提升，虚拟车辆的跟踪车速也会提升，保证了扩展的

采样安全集不会影响圈速的提升效果。由于第 3章设计的运动控制器控制频率高，且

虚拟车辆没有真实时间概念，在虚拟车辆模型递推步长等于真实车辆采样间隔时，

虚拟车辆完成一圈的程序耗时小于真实车辆。 

真实车辆完成第 j 圈后，虚拟车辆开始离线跟踪，此时真实车辆在运行第 1j + 圈，

所以按照第 j 圈车速离线跟踪赛道中心线的扩展采样安全集，会在真实车辆运行第

2j + 圈时使用。如果定义车辆暖胎圈为第 0 圈，则第 1 圈无虚拟数据进行扩展，只

利用初始采样安全集构建终端约束，第 2 圈开始可以利用第 0 圈真实数据与第 0 圈的

虚拟数据构建凸安全集约束，第 3 圈开始利用第 1 圈真实数据与第 1 圈虚拟数据构建

约束。 

为保证虚拟车辆复现真实车辆表现，利用高斯过程在线校正模块服务，对参数

辨识建模误差、未建模动态及真实车辆参数变化，进行非线性动力学模型的在线校

正，具体理论见 4.6 节。 
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4.4 赛车模型预测规划控制优化问题设计 

本节从预测模型、目标函数、约束条件三个角度阐述了赛车模型预测规划控制

优化问题的构建，并将优化问题转化为 OSQP 标准形式。 

4.4.1 预测模型建立 

根据 4.1 节对赛车迭代问题的分析，传统常数轮胎侧偏刚度的动力学模型无法满

足工况需求，且为避免横纵向解耦规划控制的局限性，本章动力学模型采用第 2章辨

识 得 到 的 横 纵 向 耦 合 非 线 性 动 力 学 模 型 进 行 线 性 化 处 理 ， 状 态 量 为

 , , , , ,X Y v r =x ，控制量为  f r, ,T T =u 。 

线性化过程中，参考点的选取至关重要，以二维状态空间为例，如图 4.9，如果

参考点与实际状态在状态空间中相距较远，用参考点导数代替实际状态导数会使预

测状态发生较大偏差，尤其在高速极限工况下，车辆呈现强非线性特性。运动控制

问题以跟踪已知目标轨迹为目标，连续两帧控制间预测状态量序列相差不多，所以

可以将第一帧优化问题的状态预测序列作为第二帧优化问题模型线性化的参考点。

但规划问题则不同，其以规划可行轨迹为目标，如果不加以约束，连续两帧间的状

态序列可能因为环境而产生较大变化，从而出现图 4.9 所示问题。所以，在采用上一

帧的状态预测序列作为线性化参考点时，需要在约束条件中限制参考点偏差。 

参考状态

实际状态
下一时刻状态

预测状态

 

图 4.9 线性化原理分析 

线性化后，需要利用零阶保持器离散化预测模型，线性化后的连续线性模型如

式(4.5)所示。 
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 (4.5) 

零阶保持器在精确度和稳定性方面优于欧拉离散，离散后预测模型如式(4.6)所

示。 

 
( )

( )

1 d d d

d

d

d 1

d

d 1

d

k k k

t

t

t

e

e

e

+

−

−

= +

=

= −

= −

A

A

A

x A x + B u h

A

B I A B

h I A h

 (4.6) 

4.4.2 目标函数设计 

目标函数由预测时域内积分项与终端项两部分组成。本研究的规划控制器为无

参考规划控制，不需要惩罚与参考线间的偏差。积分项包含三部分，首先，为减少

规划轨迹的车速振荡与前轮摆振，需要在目标函数中惩罚控制量。其次，随着圈数

提升，车辆会逐渐靠近道路边界，为防止因超出边界约束导致无法求解，将道路边

界约束设置为软约束，需要在目标函数中考虑道路边界约束松弛因子。最后，积分

项中的松弛部分与控制量部分使终端项在目标函数中占比减少，为提高车速梯度，

在目标函数中设置车速的奖励项。 

终端项包含两部分，首先，为提高求解效率，终端状态约束设置为软约束，需

要惩罚终端约束松弛项。其次，需要考虑终端的安全集加权惩罚函数。设计 t 时刻的

目标函数如下： 

 
( ) ( )
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(4.7) 
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式中，
b

q 为道路边界约束松弛项权重， b 为道路边界松弛因子； vq 为车速奖励权重；

q  , 
fTq 与

rTq 分别为前轮转角、前轴力矩与后轴力矩权重； p |t N tQ + 为终端项，其中

X
q , 

Y
q , q

 , 
v

q , 
r

q 与 q
 分别为各状态量的终端约束松弛项权重，第 5章试验设定

参数时统一用 pNq 表示， p, |X t N t +  , p, |Y t N t +  , p, |t N t +  , p, |v t N t +  , p, |r t N t + 与 p, |t N t + 分别为

各状态量终端约束松弛因子； tSS 为当前预测时域匹配的采样安全集总点数， i 为

采样安全集中各点权重， iQ 为采样安全集各点到终点的代价值。规划控制问题复杂，

目标函数中涉及权重较多，不可避免会出现相互干扰的情况。为保证约束的有效性，

松弛项权重取值需要偏大。 

4.3 节扩展后的第 j 圈采样安全集包含 2j − 圈的真实车辆数据与根据 2j − 圈车速

序列跟踪道路中心线的虚拟车辆数据。构建目标函数与约束时，需要根据参考终端

状态在采样安全集中寻找匹配序列，用于构建终端项。 

首先，需要确定参考的终端状态，若此时刻为第 1 帧，则不存在上一 MPC 优化

问题的解，可将初始采样安全集中第 pN 个状态点作为参考终端状态；其余时刻，可

以将上一采样时刻优化问题求解得到的终端状态作为参考终端状态。在车道中心线

序列中查找参考终端状态对应的纵向距离 s ，若参考终端状态经过终点，采样安全

集的圈数索引加 1。在建立匹配序列时，第 1 圈时（暖胎圈为第 0 圈）由于不存在虚

拟安全集数据，需要单独处理。 

以第 j 圈为例（ 1j  ），查找当前参考终端状态在真实安全集与虚拟安全集中对

应索引，存在如图 4.10 的三种情况。 

starti endi终点线

参考终端状态

starti endi终点线

参考终端状态

终点线

参考终端状态

starti
endi

 

图 4.10 采样安全集匹配序列的三种情况 

图中，绿色矩形为上一优化问题规划的预测时域路径，蓝色圆为虚拟采样安全
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集，橘色圆为真实采样安全集，点划线为终点线。根据参考终端状态可以分别匹配

虚拟、真实采样安全集中某一点，从该点向前、后各查找 ( )1 2nK − 个点，得到匹配

安全集共 2 nK 个点（ nK 为奇数）。设其起点索引为 starti ，终点为 endi ，第一种情况为

匹配安全集不经过终点线，此时 starti 与 endi 同处于 2j − 圈，匹配安全集中各点代价值

如下： 

 
2 1

start end1, , ,
ji

i

k i

Q i i i
− −

=

= =  (4.8) 

式中， 2 1ji − − 为第 2j − 圈的终点索引，其代价值为 1。第二种情况为车辆参考终端状

态未经过终点线，但索引 endi 已超出 2j − 圈，越过终点线处于下一圈，此时需要引入

第 1j − 圈安全集，将 1j − 圈中从终点线到 endi 的点加入匹配安全集。此情况匹配安全

集中各点代价值如下： 

 

( )

2 1

start 2

end 2

0

1, , , 1

0, 0

1 , 1, ,

ji

i j

k i

i

i

i j

k

Q i i i

Q i

Q i i i

− −

−

=

−

=


= = −




= =

 = − = −






 (4.9) 

第三种情况为车辆参考终端状态已经过终点线，采样安全集圈索引为 1j − ，但

索引 starti 小于 0，仍处于 2j − 圈。此时需要相加第 2j − 圈的匹配安全集点的代价值与

第 1j − 圈的总代价。由于此时车辆未完成第 j 圈，第 j 圈安全集的总代价未知，这也

是要在第 j 圈采用第 2j − 圈安全集，而不是第 1j − 圈安全集的原因。此情况匹配安

全集中各点代价值如下： 

 

2 1

1

1 1

start 2 2

0

1

end

1 1, , , 1

1, 0, ,

j j

j

i i

i j j

k i k

i

i

k i

Q i i i i

Q i i
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−
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−

=


= + = + −





= =



 



 (4.10) 

第 1圈中，由于仅有真实车辆暖胎圈安全集，需要特殊处理虚拟安全集与真实安

全集相同。当在第 1 圈处于第一种情况时，利用暖胎圈数据构建各点代价值如下： 

 
0 1

start end1, , ,
i

i

k i

Q i i i
−

=

= =  (4.11) 

第二种情况时，由于不涉及第 1 圈总代价，所以可将第 1 圈从终点线到 endi 的点

加入匹配安全集。各点代价如下： 



北京理工大学硕士学位论文 

 61 

 

( )

0 1

start 1

end 1

0

1, , , 1
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1 , 1, ,

i

i

k i

i

i

i

k

Q i i i
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−
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=


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 (4.12) 

第三种情况涉及第 1 圈总代价，而此时真实车辆未完成第 1 圈。本研究以暖胎圈

总代价代替第 1 圈总代价，各点代价如式(4.13)。此时匹配安全集不连续，但由于第

1 圈车辆车速较低且靠近道路中心线，影响可忽略。 

 

0 0

0

1 1

start 0 0

0

1

end

1 1, , , 1

1, 0, ,

i i

i

k i k

i

i

k i
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−

=


= + = + −



 = =
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 
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 (4.13) 

综上所述，匹配安全集 tSS 共 2 nK 个点，终端安全集惩罚函数为匹配安全集中各

点代价的加权和。 

4.4.3 约束条件设计 

规划问题需要满足避碰约束，本研究工况不涉及静态/动态障碍物，仅需要进行

道路边界约束。首先需要利用预测时域内各参考点坐标查找其在道路中心线的匹配

点与纵向距离 s 。如图 4.11，可以利用道路中心线匹配点计算参考点在道路左右边

界投影点坐标，如式(4.14)。 

Y

X

dX

dY
ds

 l l,X Y

 c c,X Y

 r r,X Y

 

图 4.11 参考点左右边界示意图 

 

l c l c

r c r c

d d
,

2d 2d

d d
,

2d 2d

Y X
X X d Y Y d

s s

Y X
X X d Y Y d

s s

 

 


= − = +



 = + = −


 (4.14) 

式中，绿色矩形为预测时域内 t k+ 时刻参考点；  c c,X Y 为道路中心线匹配点；
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 l l,X Y 为道路左侧边界投影点，  r r,X Y 为道路右侧边界投影点； dX  , dY 与 ds 分别

为道路中心线匹配点坐标与纵向距离的变化率。道路边界约束如下： 

 
l l r r b | |

l l r r b

d d d d d d
min ,

d d d d d d

d d d d
                                                                       max ,

d d d d

t k t t k t

Y X Y X Y X
X Y X Y X Y

s s s s s s

Y X Y X
X Y X Y

s s s s

     

   





+ +

 
− + − + −  − + 
 

 
 − + − + + 

 

 (4.15) 

松弛因子 b 需要大于等于 0。除道路边界约束外，由于车辆机械结构限制与动力

性限制，约束控制量 f r, ,T T  如下： 

 

fmin f, | fmax p

rmin r, | rmax p

min | max p

, 0, , 1

, 0, , 1

, 0, , 1

t k t

t k t

t k t
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+

+

+

   = −


  = −
   = −

 (4.16) 

式中， fminT  , fmaxT  , rminT  , rmaxT  , min  , max 分别为前、后轴力矩与前轮转角极值。控

制量变化率过大易造成车辆损坏或失稳，所以需要约束控制量变化率，如式(4.17)。 

 

fmin f, | f, 1 fmax
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



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 (4.17) 

规划问题需要约束车速范围，由于赛车迭代不涉及倒车，所以车速约束如下： 

 | max p0 , 1, ,t k tv v k N+  =  (4.18) 

为保证车辆行驶安全，需要根据道路附着系数约束横摆角速度与质心侧偏角。

质心侧偏角约束参考 Zhang 等人[77]工作中的经验公式，横摆角速度约束可以根据最

大横向加速度与参考点车速、质心侧偏角计算，如式(4.19)。 

 ( ) ( )

( ) ( )

|

l l l l

|

cos cos

arctan 0.02 arctan 0.02

t k t

t k t

g g
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g g
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 

  

+

+


−  

−  

 (4.19) 

终端软约束为 4.4.2 节中匹配采样安全集的状态加权，如式(4.20)。 

 
p

1 1

, 0, 1,
t t

t N i i i i i t

i i

    +

= =

−  −   =  x xx x x

SS SS

SS  (4.20) 

式中， x 为终端松弛项，其包含各状态量终端松弛项。根据 4.4.1 节中分析可知，如
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果实际状态与参考状态相差过多，会使线性化后的模型预测精度下降，所以需要通

过约束连续两个采样时刻的控制量间接约束状态量与参考状态间偏差，如式(4.21)。 

 

flmin f, | f, | 1 flmax p

rlmin r, | r, | 1 rlmax p

lmin | | 1 lmax p

, 0, , 2

, 0, , 2

, 0, , 2

t k t t k t

t k t t k t

t k t t k t

T T T T k N

T T T T k N

k N   

+ + −

+ + −

+ + −

  −   = −

  −   = −

  −   = −

 (4.21) 

式中， flminT  , flmaxT  , rlminT  , rlmaxT  , lmin  , lmax 为前、后轴力矩与前轮转角的

参考偏差约束。除不等式约束外，预测模型与状态初值表达为等式约束形式如下： 

 
1| | | p

|

, 0, , 1t k t d t k t d t k t d

t t t

k N+ + + += + + = −

=

x A x B u h

x x
 (4.22) 

类似 3.4.4 节，优化问题构建后，也需要进行优化求解设计，转化为如式(3.25)的

OSQP 标准形式，以利用 OSQP 求解器进行求解。由于优化问题复杂，所以采用稀疏

法，定义求解变量 ξ如下： 

 
p p p n p p

T

| | | | b, 1| b, | 0 2 , | , |, , , , , , , , , , , , , ,t t t N t t t t N t t t t N t K X t N t t N t     + + + + + +
 =
 

ξ x x u u  (4.23) 

求解变量包括五部分，状态量序列，控制量序列，道路边界约束松弛因子序列，

匹配采样安全集各点权重，终端约束松弛因子。针对求解变量，可对上述目标函数

与约束条件进行转化，具体方式与 3.4.4 节类似，本节不再赘述。 

4.5 信号延迟分析与处理 

本节分析车辆闭环控制中的信号延迟，利用离线在线结合的方式实时辨识，并

在规划控制器中补偿信号延迟。 

4.5.1 信号延迟分析 

如图 4.12 为规划控制器与车辆的闭环控制架构。传感器获取车辆实时状态量，

通过 CAN 通信或串口发送至规划控制器。规划控制器处理状态量并通过规划控制算

法计算得到目标控制量，通过 CAN 通信发送至执行器。执行器响应目标控制量，使

车辆状态发生变化，形成闭环。 

规划控制器 执行器 传感器
CAN

控制量

实时状态量
CAN/串口  

图 4.12 车辆闭环控制架构 
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车辆控制过程的时延取决于多因素。如图 4.13，由于 CAN/串口通信的延迟，控

制器在第 t 个采样时刻接收到的车辆状态与底盘状态，实际是 sdt N− 时刻传感器测量

的真实状态， sdN 为传感器输出到控制器接收间的时延；控制器接收到状态后，进行

预处理，并计算求解，计算时间会导致控制器真实的输出时刻为 cdt N+ ， cdN 为控制

器计算时间，正常情况下，程序运行时间小于采样时间， cdN 为 1；控制器输出的控

制指令经 CAN 通信传输至执行器，这一过程存在通信时延 cmdN 。执行器接收到控制

信号后，执行存在滞后，这一部分时间为 acdN 。 

CAN通信/串口通信

控制器计算

CAN通信

执行器滞后

传感器输出

控制器接收

控制器输出

执行器接收

执行器响应
 

图 4.13 车辆控制时延分析 

除上述时延外，执行器对信号的响应本质上是一个一阶惯性环节，如图 4.14。

本研究在优化问题中约束了控制量变化率，避免控制量的大范围阶跃，所以未建模

执行器惯性环节，仅考虑时延补偿。 

时间

控制量 控制信号

执行信号

滞后

惯性

环节

 

图 4.14 执行器响应示意图 

由于存在时延，车辆当前时刻计算得到的控制指令并不应用于当前状态，当前

执行的控制指令是在几个采样时刻前控制器发送的。需要在规划控制器中对信号延

迟进行补偿，否则车辆实际表现与预测状态相差较大。 

4.5.2 信号延迟补偿 

在进行补偿前，需要辨识信号延迟，本研究结合离线辨识与在线修正，首先采

集连续多个采样时刻的底盘反馈前轮转角 back 序列与前轮转角信号 序列，计算如

式(4.24)的互相关函数。 
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 ( ) ( ) ( )back

k

R k k   


=−

= −  (4.24) 

互相关函数的峰值反映了两信号间延迟帧数，由于信号延迟受环境影响，在

离线辨识确定延迟帧数后，需要在结果上下进行在线修正。在线修正的具体方法为，

控制器在接收底盘反馈的执行器状态信号后，将其与离线辨识延迟帧数附近几帧的

控制器输出做差比较，选择差值最小的一帧，即得到在线修正后的延迟帧数 dN 。 

根据 4.5.1 节的分析，由于底盘反馈的执行器状态会在延迟时间 sdN 后被控制器

接收，所以利用底盘反馈序列与控制信号序列辨识得到的延迟帧数 d sd cdN N N= +

cmd acdN N+ + 。辨识延迟帧数后，本研究考虑两种补偿延迟方式。第一种方式将延迟

补偿融入优化问题构建中，以采样时间状态作为状态初值，在 4.4.3 基础上增添如式

(4.25)的控制量约束，约束待优化的控制量序列中的前 dN 项等于历史前 dN 帧采样时

刻的控制量输出。 

 
d| d, 0, , 1t k t t N k k N+ − += = −u u  (4.25) 

求解后选择控制序列第 d 1N + 帧控制量作为本采样时刻控制输出。本研究提出的

第二种方式，是利用第 2 章辨识的非线性模型，从采样时间状态使用历史前 dN 帧采

样时刻的控制输出递推，得到本帧控制量作用时的车辆状态预测值，作为优化问题

的初始状态量，如图 4.15。 

采样

状态

优化问题

初始状态

模型递推

 

图 4.15 信号延迟补偿示意 

两种方式的本质均是从当前采样状态推导控制量作用时刻的状态，第一种方式

相比第二种方式的缺点，一是收紧了优化问题的可行域，增加了求解计算时间与失

败概率，二是优化问题内线性化后的模型精度降低，对车辆状态的预测不够准确。

综上所述，本研究采用第二种方式补偿信号延迟。 

4.6 基于高斯过程回归的在线模型校正 

在 4.3.2 节的采样安全集扩展与 4.5.2 节的信号延迟补偿过程中，均利用第 2 章辨

识的高精度非线性动力学模型，但一方面存在参数辨识建模误差与未建模动态等问
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题，另一方面赛车动力学特性会受到环境、车辆状态等因素影响，所以需要对离线

辨识的非线性动力学模型进行实时修正，以保证虚拟采样安全集与信号补偿时状态

预测的准确性。本节首先介绍高斯过程回归的基本原理与在线模型校正的方案，然

后介绍超参数优化过程与数据库的设计。 

4.6.1 高斯过程回归原理 

高斯过程是概率论和数理统计中随机过程的一种，是一系列服从正态分布的随

机变量在一指数集内的组合。可以将其理解为无限维的高斯分布，其中每一个维度

都符合一元高斯分布，一个高斯过程的有限维度的子集都服从一个多元高斯分布。 

高斯过程回归是使用高斯过程先验对数据进行回归分析的非参数概率模型，已

知训练数据集如下： 

 

T T

0

T T

0

; ;

; ;

m n

m

m n

m





  =   
= 

 =   

Y

Z

Y y y

Z z z

R
D

R
 (4.26) 

式中， Z 为用来进行高斯过程回归的相关特征状态向量，即高斯过程模型自变量；

Y 为高斯过程模型因变量； nY 为输出维度， nZ 为输入维度，m 为训练数据集维度。

高斯过程回归的主要目标是辨识得到特征状态向量到输出量的映射关系，针对每个

输出维度  1, ,i n Y ，如式(4.27)。 

 ( ) iy f w= +z  (4.27) 

式中， :
n

f →ZR R 为从 nZ 维到一维的实数空间映射， ( )0,i iw N 为第 i 个输出维

度的高斯噪声。通过离散的训练数据集 D构建高斯过程，能得到连续域上所有自变

量的分布规律。如图 4.16，高斯过程可视为一个函数，输入为 z，输出为高斯分布的

均值和方差。 

 

图 4.16 高斯过程回归示意 
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基于训练数据的高斯过程先验表示如下： 

 ( ) ( ) ( )( ), ,ff z N μ z k z z  (4.28) 

式中， ( ) :
n nf →Z Yμ z R R 表示样本数据集因变量Y 的均值函数，返回各维度均值，

( ), :
n n n n  →Z Z Z Zk z z R R R 为样本数据自变量 Z 的协方差函数，也叫核函数，返回

两个向量各维度间的协方差矩阵，如式(4.29)。 

 ( )
2

2 2

2
, exp

2l


 − −
  =

 
 

z z
k z z  (4.29) 

式中，  , l 为高斯核函数的超参数。核函数表示数据的协方差距离，表征两个未知

样本的相似程度。核函数的选用与参数设置决定了样本点相似性的度量方法，进而

影响整个函数概率分布的形状。 

基于训练集D与其对应的高斯过程函数 ( )f z ，可以根据测量或观测的新样本数

据 
z 预测其输出量 

y 如下： 

 

( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

*

* * * *

* * * *

GP

1
* 2

1
* 2

| , ,f f

f

w

f

w

f f





−

−

 = 



= +

  = − +


ZZz Z

ZZz z z Z Zz

z z Z Y N μ z z

μ z k k I Y

z k k k I k

 (4.30) 

式中，
m

 
z Z

k R ，第 j 列 ( )*[ ] ,j j =
z Z

k k z z ； ( )* *

T

=
Zz z Z

k k ； m mZZk R ，第 i 行 j

列 ( )[ ] ,ij i j=ZZk k z z ； ( )* *,  =
z z

k k z z 为观测新数据的不确定性。均值 ( )*f
μ z 本质为

先验数据集Y 的线性函数，协方差 ( )*f z 本质为新数据的不确定性减去先验模型引

发不确定性的减少量。 

高斯过程是一种非参数模型，没有训练模型参数的过程，一旦核函数、训练数

据确定，则模型被唯一确定。但是核函数本身有参数，例如高斯核函数中超参数  , 

l 。超参数优化的过程是对于高斯过程回归模型 ( )f=y z ，给定输入量 Z ，在最优超

参数组合 *[ , ]l  = 下最大化Y 出现的概率，输入量 Z 下Y 分布如式(4.31)，其高斯

分布密度函数如式(4.32)。 

 ( )( )| , 0,N 
ZZ

Y Z k  (4.31) 

 ( )
( )

/2 1/2

1
| , exp

22
m

p 


 
= − 

 

ZZ

ZZ

Y k Y
Y Z

k
 (4.32) 

为便于分析，定义其对数似然函数如下： 
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 ( ) ( )
1 1

log | , log 2 log
2 2 2

m
p   = − − −ZZ ZZY Z k Y k Y  (4.33) 

通过最大化对数似然函数寻找最优参数，该优化问题可表示如下： 

 ( )* min log | ,p


 = − Y Z  (4.34) 

优化超参数后，即可通过训练集与其对应的高斯过程函数 ( )f z 预测输出量。 

4.6.2 在线模型校正方案设计 

本研究构建状态、控制特征量与非线性模型预测偏差间的高斯过程模型。利用

高斯过程回归，通过状态、控制特征量估计采样时刻的模型预测偏差，在现有模型

基础上进行补偿，提升 4.3.2 节与 4.5.2 节的模型预测精度。由于高斯过程回归是非参

数方法，所以校正精度受到数据点的影响，训练数据库至关重要。如果将在线采集

的所有数据都存入训练集，随着时间推移，消耗的计算资源增加，不可避免出现实

时性问题，所以限制数据库总数据数，并利用某种筛选方式更新数据库，具体方法

在 4.6.4 节阐述。设计的在线模型校正模块架构如图 4.17 所示。 

暖胎圈数据 超参数优化

数据库收集

数据库更新

预测模型偏差估计 采样安全集扩展模块信号延迟补偿模块

超出最大数据量

双线程

是

预测偏差

特征输入

预测偏差

特征输入

最优超参数 , , wl   

离线辨识非线性模型

( )1 offline ,k k kf+ =x x u

否

非线性模型预测偏差

( )( )†
1 offline ,k f k k kB x f+= −y x u

;k k kB B=   zx zuz x u

( )1 true ,k k kf+ =x x u

新数据对 ( ),k kz y

z
y

z

y  

图 4.17 在线模型校正节点架构 

定义真实车辆动力学系统如式(4.35)。 

 ( ) ( ) ( )( )1 true offline, ,k k k k k f k kf f f+ = = + +x x u x u Β z w  (4.35) 

式中， ( )true ,k kf x u 为真实车辆系统； ( )offline ,k kf x u 为第 2 章离线辨识的非线性动力

学模型； ( )kf z 为高斯过程模型； kz 为选取的特征输入量，即从状态量与控制量中

选择对输出量影响较大的部分； kw 为真实系统噪声； fB 为输出量扩展矩阵。该式

可转化为输入输出形式如下： 

 ( )( ) ( )†

1 offline ,k f k k k k kf f+= − = +y B x x u z w  (4.36) 

式中， †
fB 为 fB 的伪逆。动力学模型状态量为  , , , , ,X Y v r =x ，其中 v  , r  ,  彼此
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耦合，且影响 X , Y , ，所以选择对 v , r ,  进行在线校正，输出量扩展矩阵为 f =B

 3 3 3 30 ; I ，输出量 ky 为下一时刻真实状态量与本采样时刻模型预测的状态量间的偏

差 [ , , ]v re e e ，特征输入量 kz 选择  f r, , , , ,v r T T  。选择矩阵  3 3 3 30 , =zxB I ， =zuB

3 3I 。 

为提高估计效果，需要处理输出量与特征输入量，首先特征输入量中各项维度

相差较大，例如力矩最大为 103N 量级，而质心侧偏角即便在大曲率弯道上也很少超

过 1rad，所以需要对特征输入量增加相应系数。其次，根据动力学模型可知，不同

输出量受特征输入量的影响不同，例如 ve 为纵向状态量，更易受到前后轴力矩 fT  , rT

影响，所以可以适当增大 fT  , rT 系数。最后，由于偏差量量级较小，所以需要在数据

库中对其进行放大，最终处理后如下： 

 

( )

( )

( )

10000 10 ,10 ,100 ,10 ,10 ,100

1000 ,100 ,1000 , , ,1000

10000 ,100 ,1000 , , ,1000

v f r

r f r

f r

e f v r T T

e f v r T T

e f v r T T

 

 

 

=

=

=

 (4.37) 

在线校正的具体流程如下，首先需要优化超参数 , , wl   ，相比上节增加高斯噪

声参数 w ，其叠加在 zzk 对角线项上，即 i j=z z 时。超参数优化细节在 4.6.3 节介绍。

超参数数值确定后，需要构建数据库，车辆规划控制器采集最新状态后，会与上一

时刻信号延迟补偿模块中非线性模型预测的状态做差，形成输出量，和上一时刻车

辆状态中的特征输入量形成数据对，发送至在线模型校正模块，值得注意的是，需

要去除预测状态中的校正部分。在线模型校正模块收到数据对后，判断此时数据库

中数据点数量是否达到设定最大值，若未达到设定值则直接将该数据点加入数据库，

否则对数据库进行数据替换。当数据库数据量较少时，估计的预测偏差并不准确，

所以在线模型校正模块会在数据库达到设定值后开始提供服务。 

在线模型校正模块在线接收延迟补偿模块与采样安全集扩展模块的 k 时刻特征输

入 kz ，并返回特征输入对应的 k 时刻对 1k + 时刻的模型预测偏差[ , , ]vk rk ke e e 。为提

高整体运行效率，避免在线模型校正模块减慢整体运行速度，采用双线程模式，如

图 4.18 所示，由于更新时间相对较长，所以数据库每次更新后，会复制一份用于对

外服务，在复制过程时节点无法提供服务，但复制过程耗时很短，所以影响较小。

如果数据库更新后发现节点正在提供服务，不会进行复制过程，避免了多线程间冲

突。 
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等待数据 是否需要更新 更新数据库 是否正在校正服务

复制flag=1 复制数据库

复制flag=0

等待输入 是否正在复制数据库 返回0值

校正服务flag=1 高斯过程回归 返回预测输出 校正服务flag=0

否

是 是

否

是

否

数据库

数据库更新线程

校正服务线程

 

图 4.18 多线程模式示意 

值得注意的是，正是由于存在信号延迟，所以已知本时刻的真实控制量。采样

安全集扩展模块中的控制器与虚拟车辆是串联运行，所以在车辆状态递推时也已知

控制量。 

4.6.3 超参数优化设计 

本研究在暖胎圈进行超参数优化过程。4.6.1 节中介绍的超参数优化原理，最终

需要求解一个对数似然函数的优化问题，由于超参数新增 w ，核函数(4.29)修正为式

(4.38)。 

 ( )

2

2 2

2

2

2 22

2

exp ,
2

,

exp ,
2

w

l

l



 

  − −
   

   
= 

 − −
  + =
 

  

z z
z z

k z z

z z
z z

 (4.38) 

由于不同输出量分布不同，所以需要分别对 [ , , ]v re e e 各优化一组超参数，优化

问题求解采用弹性反向传播，优化迭代流程如图 4.19。 

设置初始值、变化率、限值、加减速因子

计算当前偏导数

偏导数符号改变变化率*加速因子 变化率*减速因子

更新超参数

偏导数小于容许值

输出最优超参数

是否

否

是

 

图 4.19 超参数优化流程 



北京理工大学硕士学位论文 

 71 

首先为三个超参数设置初始值、变化率初始值、变化率最大值与变化率最小值，

设定超参数变化加速因子与减速因子。计算当前超参数下对数似然函数对三个超参

数的偏导数向量，分别与上一时刻各超参数偏导数相乘，结果若为正数，说明梯度

符号未变化，变化率乘以加速因子以提高优化速度；若为负数，说明梯度符号变化，

变化率乘以减速因子以稳定收敛。更新超参数后，迭代进行直至偏导数序列一范数

小于容许值，停止迭代。 

除了在暖胎圈优化超参数外，在赛车完成一次跑动后，也可以利用跑动时存储

的数据库离线优化超参数，下一次跑动时暖胎圈可在当前超参数基础上进行优化。 

4.6.4 数据库设计 

高斯过程数据库维护的本质是维护训练集的输入输出与先验协方差矩阵 ZZk ，根

据先验协方差矩阵定义可知其为正定对称矩阵，可利用如式(4.39)的 cholesky 分解提

高求逆运算速度。 

 T=ZZk LL  (4.39) 

如图 4.16 中所示，数据点附近的高斯过程回归的预测方差较小，相同数据点数

量下，数据越分散，单个数据提供给高斯过程的新信息就越多，覆盖更广的特征空

间。对数据点定义如式(4.40)的代价值 i ，评价每个点与数据库中其余点间的相似性。 

 ( )
\ \ \ \

1
2

i i i i i i i ii w 
−

= − +z z z Z Z Z Z zk k k I k  (4.40) 

式中， \iZ 为数据库除第 i 点外的所有特征量。 i 本质是 iz 的不确定性，其数值越大，

说明其与数据库中其余点相似性越低，其余点不能很确定的估计 iz 点对应的输出量，

则倾向于将该点补充进数据库。 

 在线校正模块将数据点添加至数据库时，需要计算新数据点代价值 1m + ，各点的

协方差矩阵变化如式(4.41)，根据更新后协方差矩阵可更新各数据库点代价值 i 。 
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 (4.41) 

若当前数据库数据量已达到设定最大值，则需要将新数据点代价值 1m + 与数据

库中代价值平均值比较，小于则说明新数据点与现有数据库中数据相似度较高，现
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有数据库能以较小的方差估计新数据点输出，舍弃新数据点；大于则需要将新数据

点加入数据库，替换现有数据库中代价值最低的点 minz 。替换后更新各数据点代价

值，各点协方差矩阵变化如下： 
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(4.42) 

由于车辆会受到环境、车辆状态等因素影响，所以需要在保证数据覆盖广度的

同时，也要保证数据的时效性。每次新增数据对或替换数据对时，对更新后的各数

据库点代价值乘以衰减因子，衰减因子小于 1，以使旧的数据代价值逐渐减小，最

终被替换成相近的新数据。 

4.7 本章小结 

本章针对赛车迭代问题的规划控制进行了下述研究与工作： 

（1）分析赛车迭代问题并设计规划控制器架构； 

（2）设计包含采样安全集终端的模型预测规划控制优化问题； 

（3）利用高精度非线性动力学模型作为虚拟车辆，扩展凸安全集约束空间； 

（4）分析辨识规划控制过程中信号延迟，并设计方案进行补偿； 

（5）设计基于高斯过程回归的在线模型校正模块，对采样安全集扩展模块与延

迟补偿模块中的离线辨识非线性动力学模型进行在线校正。 
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第5章  赛车迭代轨迹规划与运动控制策略验证 

本章搭建了 CarSim-dSPACE-ROS 硬件在环仿真平台，验证基于线性时变模型预

测控制的运动控制器与基于采样安全集的模型预测规划控制器的有效性。本章试验

设计思路如下： 

（1）通过在硬件在环仿真环境中设置循迹工况，测试第 3 章设计的运动控制系

统中各模块功能，验证其满足暖胎圈循迹与扩展安全集要求，并与基于线性定常模

型的传统运动控制器在控制精度、实时性等方面对比。 

（2）设计试验赛道，将第 4 章基于采样安全集的模型预测规划控制器，与宾夕

法尼亚大学的 xLab 实验室参考 Rosolia 等人论文开发的 LearningMPC 轨迹规划控制

器进行对比分析，并验证信号延迟分析处理模块与高斯过程回归校正模块效果。 

5.1 CarSim-dSPACE-ROS 硬件在环仿真平台搭建 

硬件在环仿真（Hardware in the Loop, HIL），又称半实物仿真，其将真实控制器

连接实时仿真硬件模拟的被控对象，高效、低成本的测试控制算法与控制器性能。

其由硬件平台、软件平台、实时仿真模型、I/O 接口组成。硬件平台即实时主机，以

实时的方式运行被控对象模型，充当被控对象，并模拟各类故障，其通过 I/O 接口连

接至被测的控制器。软件平台运行在硬件平台上位机中，主要负责试验管理、测试

用例编辑、数据可视化等功能。实时仿真模型为硬件平台的运行基础，一般利用

Simulink/CarSim/AMESim 仿真平台搭建。 

相比虚拟时间的传统软件仿真，硬件在环仿真的硬件平台会按现实时间实时运

行被控对象，控制器实时性会影响控制效果。此外，控制器与硬件平台间通过实际

物理接口进行信号传输，能够模拟实车的信号传输过程与传输延迟。 

相比真实试验，首先，硬件在环仿真安全性更高，新开发的算法与控制器如果

直接应用真实被控对象，易发生事故。此外，硬件在环的调试效率更高，缩短控制

算法开发时间，节省大量时间与人力成本。最后，对于一些极限工况，真实试验危

险程度较高，难以开展，而硬件在环仿真可全面测试控制算法。 

本研究的赛车迭代工况为高速工况，危险系数较高，受限于测试成本与场地等

硬件条件，采用硬件在环仿真代替实车试验。本研究试验的硬件在环仿真平台如图

5.1 所示，其架构如图 5.2 所示。 
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控制器/规划控制算法

电脑/ROS、C++

试验管理软件
dSPACE ControlDesk

实时仿真显示界面

IO板卡

CAN卡

dSPACE硬件平台

 

图 5.1 硬件在环仿真平台 

软件平台-试验管理软件
dSPACE ControlDesk

实时仿真模型
CarSim

硬件平台-实时硬件
dSPACE

IO板卡
控制器/规划控制算法

电脑/ROS、C++

实时状态量

实时控制量

CAN通信

 

图 5.2 硬件在环仿真平台架构 

本试验采用 dSPACE实时系统产品作为硬件平台，其计算能力高，实时性好，结

合 DS2202 型号 IO 板卡，可与控制器进行 CAN 通信。软件平台采用 dSPACE 配套试

验工具软件 ControlDesk，其对硬件平台进行注册与管理，并可以建立虚拟仪表，记

录实时数据。实时仿真模型通过 Simulink 的 RTI 库结合 CarSim 搭建，建模后生成系

统描述文件（*.sdf）加载到软件平台与实时硬件中。控制器采用 12代 Inter I9-CPU的

笔记本电脑，规划控制算法利用 C++语言编写内嵌于机器人操作系统（The Robot 

Operating Syatem, ROS）中。控制器与硬件平台间通过 CAN 总线通信，利用 CANoe

监测总线通信。本节将展开阐述试验的仿真环境配置过程与算法代码架构。 

5.1.1 CarSim 仿真环境配置 

本研究选取汽车与机器人领域广泛应用的 CarSim 进行实时仿真模型配置，生成

S-function 以供后续使用。实时仿真模型包含车辆与工况两部分，本小节主要介绍车

辆配置，仿真工况种类较多，在后续试验验证过程中单独介绍。本研究的目标车辆

为前轮转向，四轮驱动、制动的轮式赛车，故在 CarSim 中以 B 级跑车为基础，搭建

目标车辆模型，车辆动力学参数如第 2 章表 2.2 所示，其余参数如表 5.1 所示。 

表 5.1 仿真车辆补充参数 

车辆参数 单位 数值 车辆参数 单位 数值 

整车长度 m  2.39 驱动形式 / 四轮驱动 

整车宽度 m  1.70 制动形式 / 四轮制动 
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接下来设置 CarSim 与外部交互的 I/O Channels 接口，如表 5.2 所示。 

表 5.2 CarSim I/O Channels 接口设置 

I/O Channels 变量名称 物理意义 单位 

Input Channels 

IMP_STEER_L1 左前轮转角   

IMP_STEER_R1 右前轮转角   

IMP_MY_OUT_D1_L 左前轮输出力矩 Nm  

IMP_MY_OUT_D1_R 右前轮输出力矩 Nm  

IMP_MY_OUT_D2_L 左后轮输出力矩 Nm  

IMP_MY_OUT_D2_R 右后轮输出力矩 Nm  

Output Channels 

Xo 质心处横坐标 m  

Yo 质心处纵坐标 m  

Yaw 车辆横摆角   

Steer_L1 左前轮转角   

Steer_R1 右前轮转角   

Vx 纵向车速 km h  

Vy 横向车速 km h  

AVz 横摆角速度 s  

Beta 质心侧偏角   

My_BK_L1 左前轮制动力矩 Nm  

My_BK_R1 右前轮制动力矩 Nm  

My_BK_L2 左后轮制动力矩 Nm  

My_BK_R2 右后轮制动力矩 Nm  

My_Dr_L1 左前轮驱动力矩 Nm  

My_Dr_R1 右前轮驱动力矩 Nm  

My_Dr_L2 左后轮驱动力矩 Nm  

My_Dr_R2 右后轮驱动力矩 Nm  

Ax 纵向加速度 g  

Ay 横向加速度 g  

CarSim 输出端中包含前轮转角与轮上力矩，用于与控制器输出量对比进行信号
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延迟分析，前轮转角为左右转角平均值，轮上力矩为驱动力矩与制动力矩之和。纵

向加速度与横向加速度一方面用于数据监测，另一方面纵向加速度用于计算前后轴

荷转移。 

5.1.2 dSPACE 仿真环境配置 

本小节中 dSPACE 仿真环境配置包括三部分，第一部分是 Simulink RTI（Real-

Time Interface）版实时仿真模型搭建，第二部分是软件平台 dSPACE ControlDesk 配

置，第三部分是 dSPACE 硬件平台与控制器间通信配置。 

在传统 CarSim/Simulink 软件联合仿真中，CarSim 生成的 S-function 模块与

Simulink 中的算法进行交互，实现闭环，而硬件在环仿真中，需要利用 RTI库中模块

替换算法部分，定义 CarSim的车辆环境模型与实际控制器间硬件接口关系，如图 5.3。 

 

图 5.3 Simulink RTI 实时仿真模型 

其中橙色 GeneralSetup 模块用于定位 RTI CAN MultiMessage Blockset 文件夹；蓝

色 ControllerSetup 模块用于进行 IO 板卡型号与波特率等基础设置；青色 MainBlock

模块用于读取设置的.dbc 文件，设置 CAN 通信的 TX, RX 信号；绿色 Mapping to 

RITCANMM 模块用于将 CarSim 模块输出状态匹配到 CAN 通信的 TX 信号列表。

Memory 模块防止代数环产生，但会引入一帧的控制延迟。 

利用 RTI 库搭建实时仿真模型后，利用 Build Model 工具将实时仿真模型编译

为.sdf文件，可用于软件平台ControlDesk的配置，在ControlDesk中匹配硬件DS1006

并导入实时仿真模型，其界面如图 5.4 所示，可设置 CAN 发送频率与实时数据可视

化。 
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图 5.4 ControlDesk 界面 

通过红框中 Go Online 操作，实时仿真模型运行于 dSPACE 硬件平台，通过蓝框

中 Start Meaturing操作，ControlDesk实时监测仿真模型状态。除利用 RTI库在实时仿

真模型中定义硬件接口，真实物理层也需要进行连接，通过 CANoe软件定义 CAN通

信协议的.dbc 文件如图 5.5 所示，其定义 CAN 总线上控制器节点与硬件平台节点，

各数据帧的帧结构及数据帧中各信号的上下限，系数与偏移量。 

 

图 5.5 CAN 通信.dbc 文件 

dSPACE 硬件平台的 DS2202 板卡提供了 CANH 与 CANL 接口，可与控制器（笔

记本电脑）通过 CAN 卡转换进行通信。 

5.1.3 ROS/C++代码架构设计 

本研究第 3 章、第 4 章所提出的算法，利用 C++语言编写实现，并基于 ROS 通

讯机制实现算法各节点间通信。ROS代码架构如图 5.6所示，共包括 5个 ROS节点，

2 个服务，5 个话题，其含义如表所示。 
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/ltvmpc_offline

/vehicleStatus

/I_LearningMPC /gp_master_LMPC

/gp_master_ltvmpc

/nav

/odom /nav
/odom

/state_odom

/sample_lst
/gp_data_topic

/gp_server_LMPC

/gp_data_topic

/gp_server_ltvmpc
 

图 5.6 ROS graph 架构 

表 5.3 ROS graph 节点、话题与服务 

类别 名称 含义 

节点 

/vehicleStatus 进行 CAN 通信，帧的解析与发布 

/ltvmpc_offline 运行第 3 章设计的运动控制器 

/I_LearningMPC 运行第 4 章的规划控制器 

/gp_master_LMPC 数据库维护，为/I_LearningMPC 提供在线模型校正服务 

/gp_master_ltvmpc 数据库维护，为/ltvmpc_offline 提供在线模型校正服务 

话题 

/odom 传输车辆状态[ , , , , , ]x yX Y v v r  

/state_odom 传输车辆底盘反馈  f r, ,T T  与车辆状态[ , ]x ya a  

/nav 传输控制量  f r, ,T T   

/sample_lst 传输/ltvmpc_offline 中虚拟车辆单圈的采样安全集数据 

/gp_data_topic 传输特征输入量与输出量，用于高斯过程数据库构建 

服务 
/gp_server_LMPC /gp_master_ltvmpc 接收特征输入量，返回输出量 

/gp_server_ltvmpc /gp_master_ltvmpc 接收特征输入量，返回输出量 

节点 /ltvmpc_offline 在暖胎圈作为控制器，发布/nav 到 CAN 通信节点

/vehicleStatus，控制真实车辆跟踪道路中心线，构建初始采样安全集。当完成暖胎圈

后，由规划控制节点/I_LearningMPC 控制真实车辆迭代行驶，节点/ltvmpc_offline 控

制虚拟车辆扩展采样安全集。 

5.2 基于线性时变模型预测控制的运动控制器试验验证 

本节在硬件在环仿真中设计工况对第 3章提出的运动控制系统进行试验验证，对

路径点筛选器、纵向速度规划器、PID 纵向控制器、LMS 状态估计器、基于 LTV-

MPC的横向控制器五个模块进行功能性验证，同时对比基于 LTV-MPC的运动控制器

与基于线性定常模型的传统运动控制器在控制精度、实时性等方面表现。在试验中
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还对比了 20Hz 与 100Hz 高频控制的控制结果。 

5.2.1 仿真道路工况设计 

在试验仿真前，首先通过直线阶跃车速起步与 U 形弯道匀速行驶工况调整 PID

纵向控制器与 LTV-MPC 横向控制器参数，纵向增量式 PID 调参首先增大 I 以减少上

升时间与超调量后，增大 P 以衰减振荡，直至满足要求。横向 MPC 控制器中各项权

重含义近似于传统位置式 PID控制，
nsq 与 eq

 类似 PID控制中的 P项，能对跟踪偏差

快速反馈调整，对偏差的状态约束等效于增大其在目标函数中权重，其权重过大或

约束过严易造成控制振荡。 yvq 类似 PID 中 D 项，其影响横向偏差的变化速率，而

MPC滚动时域优化实现 PID中 I项。其参数调节过程也类似于传统位置式 PID，首先

根据需求提高
nsq 与 eq


至发生超调或控制量横摆后，增加 q 调节至满足要求，最后

增加
yvq 提升控制效果。最终仿真 PID 纵向与 MPC 横向参数如表 5.4 所示。 

表 5.4 横纵向控制器参数 

参数 数值 参数 数值 参数 数值 

P  800.0 sn
q

 
500.0 cN  10 

I  1000.0 e
q


  500.0 sT  0.05 

D  0.0 ( )max 
 

24 Hzf  20 

yvq
 

0.5 ( )( )1
max s −  

 
50 w

 
0.99 

nsq
 

20.0 max mns  0.15 h  0.008 

eq
  20.0 ( )maxe   10.0 pmin NmT  -1000 

q  10000.0 pN  20 pmax NmT  1000 

注：T 为采样时间； f 为控制频率；
w , 

h 分别为无噪声、高噪声下 LMS 梯度下降步长。 

第 3 章中提出的运动控制器仅用于暖胎圈循迹与第 4 章采样安全集的扩展，所以

设计试验工况为中心线如图 5.7 所示的赛道，五角星标志处为起点，从静止起步，目

标车速设计为 36km/h， 图 5.8 为中心线曲率，弯道最小半径为 30m，路面附着系数

为 0.85。 
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图 5.7 赛道中心线轨迹参考路径示意图         图 5.8 赛道中心线轨迹参考曲率示意图 

为评价运动控制器在极限行驶时表现，设计如图 5.9 所示的双移线轨迹模拟超车

过程，目标车速为 72km/h，图 5.10 为双移线路径参考曲率，最大曲率为 0.02 -1m 根

据参考速度，车辆行驶时最大侧向加速度可以达到 0.8g 左右，该仿真场景可评价控

制器在车辆极限转向行驶时的轨迹跟踪和运动控制能力。 

 

图 5.9 双移线轨迹参考路径示意图 

 

图 5.10 双移线轨迹参考曲率示意图 

5.2.2 赛道工况验证 

赛道总长度约 644m，初始点集共 4896个点，大于路径点筛选器的限制点数，所

以评定各路径点代价函数，如图 5.11 所示。 

 

图 5.11 路径点代价函数 
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由于赛道各段宽度与路面情况相同，所以赛道中路径点的代价函数仅与道路曲

率相关，曲率单因素影响程度较低，不同路径点代价函数相差较小。通过代价函数

占比确定各路段筛选后点数，将 4896 个点筛选至 293 个点。纵向速度规划器根据曲

率计算道路限制车速，与目标车速取较小值，规划结果与实际跟踪车速如图 5.12。 

 

图 5.12 赛道工况车速规划结果与实际车速 

暖胎圈从静止起步，初始车速设置为 0。暖胎圈限速较低，规划的车速结果为整

圈 10m/s，由于车速规划器仅计算最大限速，所以规划车速并不从零车速开始。增量

式 PID 纵向控制器控制车辆跟踪目标车速，在起步时，以算法限定驱动力矩加速至

目标值，后稳定在目标车速，20Hz 控制下超调量为 0.215m/s，峰值时间为 2.1s，调

整时间为 2.7s，稳态值为 10m/s。前、后轴力矩相等，如图 5.13 所示。相较 20Hz 控

制，100Hz 控制下超调量与调整时间均减少。 

 

图 5.13 赛道工况前、后轴力矩 

20Hz 与 100Hz 控制的基于 LTV-MPC 的横向控制器，与 20Hz 控制的基于线性定

常动力学模型的传统模型预测控制算法（Traditional MPC, TMPC）在赛道工况中表

现，如图 5.14~图 5.18 所示。 
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(a) 横向偏差 

 

(b) 横摆角偏差 

图 5.14 赛道工况跟踪偏差 

 

(a) 横摆角速度 

 

(b) 横向速度 

图 5.15 赛道工况横摆角速度、横向速度 
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图 5.16 赛道工况前轮转角 

          

图 5.17 赛道工况 G-G 图                                       图 5.18 赛道工况程序运行时间 

图 5.17 为赛道暖胎圈工况的横纵向加速度，其表明了两种控制算法在赛道暖胎

圈工况的横纵向加速度均远小于摩擦圆，车辆横向加速度小于 0.4g，处于轮胎动力

学模型的线性区。由于规划的目标车速恒定，纵向加速度除起步加速与超调时，大

部分时刻纵向加速度为 0。 

图 5.14 为轨迹跟踪过程中横向偏差与横摆角偏差，两种控制算法均能以较小的

跟踪误差稳定跟踪期望的参考路径，横向偏差在-0.18m~+0.15m 范围内，横摆角偏差

在-0.07rad~+0.07rad 范围内，在跟踪精度方面均具有较好控制性能。相比 TMPC， 

LTV-MPC 控制方法在赛道暖胎圈工况下并未有更高的跟踪精度，这是由于该工况处

于轮胎动力学线性区，线性定常动力学模型同样具有很高的预测精度。相比 20Hz，

100Hz 控制以更高频率控制车辆，减小横向跟踪偏差到-0.054m~+0.04m 范围。 

图 5.15 为轨迹跟踪过程中横摆角速度与横向速度，两种控制算法在该工况下横

向运动状态量接近，横摆角速度绝对值最大为 0.34rad/s，横向速度绝对值最大为

0.235m/s，均出现在最大曲率的第一个弯道。 

图 5.16 为轨迹跟踪过程中前轮转角，两种控制算法的控制量均平稳，无高频大

幅度摆振，收敛速度快。TMPC在起步时前轮转角存在脉冲信号，这是由于极低车速
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下线性定常动力学模型预测失准。由于车速较低，所以未产生危险与较大跟踪偏差，

但各状态量图像均体现出脉冲控制量的影响。100Hz 相比 20Hz 的前轮转角存在抖动，

但由于控制频率高，并未影响横向偏差与横摆角偏差，可忽略。 

图 5.18 为单次程序运行时间统计，本研究运动控制器控制频率为 20Hz，这是由

于运动控制器的控制结果用于初始采样安全集构建与采样安全集扩展，所以需要与

第 4 章规划控制器的频率同步。采样安全集扩展过程中，为保证第 j 圈时可以使用第

2j − 圈的虚拟车辆跟踪结果，运动控制器需要以 50Hz 频率运行。图中统计结果显示，

两种控制算法的程序运行时间中位数为 2.1ms，最长不超过 10ms。相比TMPC，由于

LTV-MPC 对非线性模型进行线性化处理，在提升模型复杂度与精度时，并未影响算

法实时性，可以实现 50Hz, 100Hz 的高频控制。 

5.2.3 双移线工况验证 

双移线工况总点数为 41，小于路径点筛选器限制点数。目标最高车速设计为

72km/h，纵向车速规划器计算的轨迹目标车速与增量式 PID 纵向控制器实际跟踪结

果如图 5.19 所示。 

 

图 5.19 双移线工况车速规划结果与实际车速 

图中蓝色实线为目标车速，在变道曲率增大时目标车速减小，由于目标路径曲

率不连续，所以目标车速阶跃。红色虚线为增量式PID纵向控制器的实际跟踪结果，

根据第 3 章分析，变道瞬间的车速高，横向加速度大，所以需要根据式(3.40)限制纵

向减速度，避免超出路面附着限制。虽然实际车速相对目标车速仍存在滞后与偏差，

但是式(3.7)中 safeK 使目标车速相对保守，且纵向减速度约束保证了不超出轮胎摩擦

圆。前后轴驱动力矩相等，如图 5.20 所示。 
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图 5.20 双移线工况前、后轴力矩 

20Hz 控制的 LTV-MPC, TMPC 及 100Hz 控制的 LTV-MPC 在双移线工况中的表

现，如图 5.21~图 5.26 所示。 

 

图 5.21 双移线工况运动控制结果 

 

(a) 横向偏差                                                              (b) 横摆角偏差 

图 5.22 双移线工况跟踪偏差 

 

(a) 横摆角速度                                                         (b) 横向速度 

图 5.23 双移线工况横摆角速度、横向速度 

 

图 5.24 双移线工况前轮转角 
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图 5.25 双移线工况 G-G 图                                 图 5.26 双移线工况程序运行时间 

图 5.25 为双移线工况的横纵向加速度，相比赛道暖胎圈工况，该工况横纵向加

速度更接近摩擦圆边界，处于轮胎动力学的非线性区，甚至 TMPC 控制过程中短时

间已超出摩擦圆范围。车辆运动中存在弯道与加减速耦合的工况，本研究提出的运

动控制器可以通过限制纵向加速度，保证车辆处于摩擦圆范围内。 

图 5.21 为双移线工况的跟踪结果，相比 TMPC，LTV-MPC 在极限工况的跟踪精

度更高，稳定性更好，TMPC 在曲率突变时路径出现画龙。所设计的基于 LTV-MPC

运动控制器可以满足非线性工况下的轨迹跟踪要求。100Hz 相比 20Hz，可以在曲率

突变时快速响应，减少超调与横摆。 

图 5.22 为轨迹跟踪过程中的横向偏差与横摆角偏差，TMPC 控制下车辆轻微甩

尾，导致横摆角偏差较大。相比 TMPC，LTV-MPC 的两种偏差均更小，横向偏差在-

0.14m~+0.062m 范围内，均方根值减少 19.91%，横摆角偏差在-0.047rad~+0.062rad 范

围内，均方根值减少 88.93%，这是由于线性时变动力学模型在轮胎非线性区相比线

性定常模型有更好的描述，预测精度更高。 

图 5.23 为轨迹跟踪过程中横摆角速度与横向速度，LTV-MPC 运动控制器在横摆

稳定控制方面表现更优，车辆在超车变道结束后，横向速度与横摆角速度均以较快

速度收敛到 0 附近，变道过程中的横向速度与横摆角速度也更小，而 TMPC 在变道

结束后发生大幅度振荡，与 G-G 图中局部点超出摩擦圆对应。 

图 5.24 展示跟踪过程中前轮转角变化，与横摆结果相对应，LTV-MPC 控制下的

前轮转角在弯道结束后快速收敛到 0 附近，而 TMPC 前轮转角产生振荡。转角在峰

值时存在小幅度振动，而图 5.23 中横摆角速度并未因此产生小幅度振荡，说明该振

动被车轮执行器的低通滤波与车辆大转动惯量消除，不影响横摆稳定性。 

图 5.26 为单次程序运行时间统计，本研究提出的运动控制器每帧耗时中位数小
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于 3ms，最长耗时 11ms，仅三帧时间超出 10ms，算法实时性高，可进行 50Hz,  

100Hz 高频控制。 

5.2.4 附加传感器噪声下 LMS 状态估计器验证 

由于硬件在环仿真并不存在传感器噪声，前两节的结果均不考虑噪声影响。实

车试验中，测量噪声普遍存在，例如博世 SMI230 的横摆角速度测量量程为 500 s  ，

公差为 1% ，为验证 3.5.2节的 LMS状态估计器是否有效，本节在 dSPACE虚拟传感

器返回的横摆角速度与横向速度中手动添加均值为 0，标准差为 0.2rad 的噪声，以赛

道工况为例，对比有无 LMS 状态估计器的 LTV-MPC 运动控制算法效果。 

首先对比 LMS 状态估计器处理前后的状态量与参考真值，如图 5.27 所示。 

 

(a) LMS 状态估计器处理前后横摆角速度 

 

(b) LMS 状态估计器处理前后横向速度 

图 5.27 LMS 状态估计器处理前后状态量 

图中：黑色加粗点划线为 dSPACE虚拟传感器返回的无噪声状态量，视为真实值；

红色虚线为添加噪声后的状态量；蓝色实线为经过 LMS 状态估计器处理后输出状态

量。滤波效果方面，LMS 状态估计器可以滤除添加的高幅值高频噪声；估计精度方

面，估计值与真值整体趋势相同，在局部存在小范围偏差，未出现失真情况。加入

噪声与 LMS 状态估计器后运动控制对比结果如图 5.28~图 5.30 所示。 
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(a) 有无 LMS 状态估计器横向偏差 

 

(b) 有无 LMS 状态估计器横摆角偏差 

图 5.28 有无 LMS 状态估计器跟踪偏差 

 

(a) 有无 LMS 状态估计器横摆角速度 

 

(b) 有无 LMS 状态估计器横向速度 

图 5.29 有无 LMS 状态估计器横摆角速度、横向速度 
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图 5.30 有无 LMS 状态估计器前轮转角 

图 5.28 为引入噪声与 LMS 状态估计器前后的跟踪偏差，图中黑色点划线为无噪

声时横向跟踪偏差，加入噪声后，横向偏差出现幅值为 0.08m的振荡，横摆角偏差出

现幅值 0.02rad的小幅度振荡，引入 LMS状态估计器后，跟踪偏差的振荡消除，跟踪

偏差曲线走势与无噪声时相同。 

图 5.29 与图 5.30 分别为横向状态与前轮转角，引入噪声后均出现振荡，而引入

LMS 状态估计器后振荡消除，与无噪声时的状态量与控制量基本相同。 

综上所述，LMS 状态估计器能在滤波的同时保证估计的状态不失真，引入 LMS

状态估计器可以很好消除噪声对跟踪精度、横向状态与控制量的影响。 

5.3 基于采样安全集的模型预测规划控制器试验验证 

本节在硬件在环仿真中设计赛道对第 4章的基于采样安全集的赛车模型预测规划

控制器进行试验验证，与 Rosolia 等人设计的原始方法对比并分析，验证采样安全集

扩展模块，信号延迟补偿模块，高斯过程回归在线校正模块效果。 

试验工况依旧采用图 5.7 所示赛道，路面附着系数为 0.85，道路宽度为 12m，已

在 5.2 节完成暖胎圈，以 36km/h 初速度开始进行循环迭代，记录每圈用时，完成 30

圈后停止试验，规划控制器主要参数如表 5.5 所示。 

表 5.5 规划控制器参数 

参数 数值 参数 数值 参数 数值 参数 数值 

pN  35 q  1.0 fmax NmT  1000.0 md  10 

nK  31 
fTq

 
0.0 rmax NmT  1000.0 Hzf  20 

b
q  

3000.0 
rTq
 

0.0 ( )( )1
max s −    14.3 ( )( )1

lmax s −    8.6 

vq  1.0 1
max m sv −  20.0 ( )1

fmax Nm sT −   300.0 ( )1
flmax Nm sT −   50.0 

pNq  
800.0 ( )max   24.0 ( )1

rmax Nm sT −   300.0 ( )1
rlmax Nm sT −   50.0 
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5.3.1 赛车迭代试验对比结果 

本小节对比本研究第 4 章提出的 I-LearningMPC 规划控制架构与宾夕法尼亚大学

的 xLab 实验室参考 Rosolia 等人论文开发的 LearningMPC 轨迹规划控制器[58-61]，两

种算法如表 5.6 所示。 

表 5.6 LearningMPC 与 I-LearningMPC 对比 

 LearningMPC I-LearningMPC 

预测模型 线性定常动力学模型 线性时变动力学模型 

状态量 , , , , ,X Y v r   , , , , ,X Y v r   

控制量 ,xa   f r, ,T T   

目标函数 

控制量惩罚、道路边界松弛量

惩罚、终端约束松弛量惩罚、

终端项 

控制量惩罚、道路边界松弛量

惩罚、终端约束松弛量惩罚、

车速奖励、终端项 

约束条件 
道路边界约束、控制量约束、

车速约束、终端约束 

道路边界约束、控制量约束、

控制量变化率约束、状态量约

束、终端约束、与参考状态间

偏差约束 

采样安全集 有 有 

扩展采样安全集 无 有 

信号延迟补偿 无 有 

高斯过程回归校正 无 有 

运行频率 20Hz 20Hz 

作为对比的 LearningMPC 输出控制量为纵向加速度与前轮转角，对应设置其

CarSim 中 Input Channel 为纵向车速与前轮转角，利用 CarSim 中内置底层控制器输出

前后轴力矩跟踪车速。I-LearningMPC的 CarSim输入输出设置如表 5.2。以 36km/h初

始速度开始循环迭代 30 圈后，停止试验。图 5.31 为第 1, 10, 20, 30 圈的两种规划控制

器的规划控制结果，图 5.32 为两种规划控制器圈时对比。 

  

(a) LearningMPC 第 1 圈轨迹                                 (b) I-LearningMPC 第 1 圈轨迹 
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          (c) LearningMPC 第 10 圈轨迹     (d) I-LearningMPC 第 10 圈轨迹 

  

          (e) LearningMPC 第 20 圈轨迹     (f) I-LearningMPC 第 20 圈轨迹 

  

          (g) LearningMPC 第 30 圈轨迹     (h) I-LearningMPC 第 30 圈轨迹 

图 5.31 第 1, 10, 20, 30 圈轨迹对比 
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图 5.32 圈时对比 

随着圈数提升，两种规划控制器的车辆圈时均不断减小，LearningMPC 第 1 圈的

圈时为 61.025s，第 30 圈的圈时减少到 47.55s，圈时缩短 22.08%；I-LearningMPC 第

1 圈的圈时为 60.65s，第 30 圈的圈时减少到 43.625s，圈时缩短 28.07%，比

LearningMPC 快 3.925s。其原因一方面是扩展采样安全集增大终端约束下的可行域空

间，另一方面是在目标函数中加入车速奖励项，提高了车速梯度。 

纵向车速方面，LearningMPC 第 30 圈车速最大值在最后一个弯道入弯前，为

49.68km/h，最低车速为 42.156km/h，整体车速分布相对均匀；I-LearningMPC 第 30

圈车速最大值在第三个弯道出弯后，为 59.607km/h，最低车速为 40.212km/h，曲率

较大的一、二、四弯道车速较小，曲率较小的第三个弯道车速较高。 

横向路径方面，由于 LearningMPC 仅采用最新两圈的真实历史数据点构建采样

安全集，在迭代一定圈数后，出现如图 4.6 所示的凸安全集约束空间，使车辆只能紧

靠道路内侧边界行驶。由于 LearningMPC 中无延迟补偿，且线性定常动力学模型预

测存在偏差，车辆实际位置与预测位置不同，当车辆紧靠道路内侧边界行驶时，实

际位置会超出道路边界约束。车辆在软约束的作用下规划控制回道路边界约束内，

而由于延迟与预测精度问题，实际位置又会在反方向超出狭窄的终端约束，导致车

辆在紧靠道路边界时出现横摆画龙，如图 5.31(e)中第 20圈的局部放大图，在第 10圈

与第 30圈中也存在类似情况。I-LearningMPC中线性时变动力学模型预测更准确，引

入延迟补偿与高斯过程回归在线校正，使规划控制器的预测结果与实际车辆状态间

偏差较小，且由于扩展采样安全集增大了凸终端约束空间，可行域更大，车辆不必

须紧靠道路边界行驶，未出现在道路边界的横摆画龙问题。如图 5.33 为第 20 圈

LearningMPC 与 I-LearningMPC 规划控制轨迹的横摆角速度与质心侧偏角，体现

LearningMPC 在弯道中出现大幅度横摆。 
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(a) 横摆角速度对比 

 

(b) 质心侧偏角对比 

图 5.33 第 20 圈横摆角速度与质心侧偏角 

图 5.34为第 20圈 LearningMPC与 I-LearningMPC中预测模型对状态量 v , r ,  的

预测偏差，由于 I-LearningMPC 中考虑延迟补偿，所以其预测偏差为第 i 时刻对第

d 1i N+ + 时刻预测的偏差，其中混杂延迟补偿过程中的非线性动力学模型预测偏差

与 MPC 中的线性时变模型预测偏差，而 LearningMPC 预测偏差为第 i 时刻线性定常

系统对第 1i + 时刻的预测的偏差。由于信号延迟，如图 5.35 局部放大图所示，横摆

振荡时 LearningMPC 预测使用的控制量与真实控制量的波峰波谷相反，图 5.34 中横

摆角速度与质心侧偏角的预测偏差峰值大于图 5.33 中状态量峰值，导致车辆横摆加

剧。 

 

(a) 车速预测偏差 
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(b) 横摆角速度预测偏差 

 

(c) 质心侧偏角预测偏差 

图 5.34 第 20 圈 MPC 中预测模型的预测偏差 

 

图 5.35 第 20 圈 LearningMPC 预测转角与真实转角 

图 5.36 为第 1, 10, 20, 30 圈两种规划控制轨迹与道路中心线的横向偏移。图中黑

色细虚线为 MPC 中 10m 宽的道路边界约束，真实道路宽度为 12m，两种规划控制器

均可以使车辆在 6m 内行驶，由于道路边界约束为软约束，所以会有少量时刻超出

5m 约束，但由于目标函数中惩罚项权重
b

q 取值远大于其余项，超出量较小。I-

Learning 新增了扩展采样安全集模块，所以其在 300m 到 500m 范围内并未紧贴道路

内侧行驶，而 LearningMPC 由于凸安全集缩小，在连续两圈均紧靠道路内侧行驶后，

只能沿道路内侧行驶。随着圈数增加，I-Learning MPC在90弯道处会形成“外内外”

的切弯形式，保证更小过弯曲率。 
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图 5.36 规划控制轨迹横向偏移 

图 5.37 为横纵向加速度 G-G 图，两种规划控制轨迹中的车辆均进入轮胎非线性

区。由于LearningMPC在弯道中剧烈横摆，横向加速度最大值超过路面附着系数0.85，

而 I-LearningMPC 横向加速度峰值小于 0.85g。 

 

图 5.37 G-G 图 

图 5.38 为第 20 圈的输出控制量，LearningMPC 在弯道时前轮摆振，与横摆角速

度相对应，I-LearningMPC 前轮转角无大幅度摆振。两种规划控制器的前、后轴力矩

均基本相同，I-LeaningMPC 的力矩变化更明显，而 LearningMPC 由于横向振荡，导

致纵向车速振荡，体现了车辆横纵向的耦合特性。 

  

(a) 前轮转角                                                      (b) 前、后轴力矩 

图 5.38 第 20 圈控制量 

图 5.39为单次程序运行时间统计，结果显示，LearningMPC共 31630个采样点，
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程序运行时间中位数为 25.5573ms，仅 26 个异常点超出 50ms，最长运行时间为

65.415ms；I-LearningMPC 共 30642 个采样点，程序运行时间中位数为 34.244ms，有

947 个异常点超出 50ms，最长运行时间为 94.189ms。相比 LearningMPC，改进后的

I-LearningMPC 由于预测模型更复杂，新增信号延迟补偿、高斯过程回归校正等多个

模块，程序运行时间更长，但 96.9%的程序运行时间小于 50ms，满足 20Hz 控制需求，

少数时刻会出现掉帧。 

 

图 5.39 两种规划控制器程序运行时间 

5.3.2 信号延迟补偿模块与在线模型校正模块验证 

本小节对信号延迟补偿模块与在线模型校正模块的有效性进行分析验证。图

5.40 为第 2 圈的控制量信号延迟与补偿结果，后轴力矩与前轴相同，不单独展示。 

 

(a) 前轮转角信号延迟补偿结果 

 

(b) 前轴力矩信号延迟补偿结果 

图 5.40 第 2 圈控制量信号延迟与补偿结果 

图中蓝色虚线为车辆底盘反馈的当前实际控制量；红色点划线为规划控制器优
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化求解得到的输出控制量，即延迟补偿前的控制量预测值；黑色实线为延迟补偿后

的控制量预测值。试验结果与 4.5 节的理论分析相同，由于通信延迟等原因，车辆底

盘实际控制量相较 MPC 优化计算的控制量存在 2 到 3 帧的滞后，如果不进行补偿则

会出现如图 5.35 中 LearningMPC 的真实控制量与预测控制量的波峰波谷相反的情况，

造成横摆加剧甚至失稳。延迟补偿后的控制量预测值在绝大部分时刻与车辆实际控

制量间相同，仅在局部存在偏差。延迟补偿后的前轮转角偏差均方根为 0.0781°，其

来源为局部对延迟的预测偏差与车辆底盘对控制量的执行偏差，延迟补偿使模型预

测时状态量与控制量间的匹配关系与实际车辆相同。 

延迟补偿后，准确的控制量也提升了模型对下一时刻状态的预测精度。图 5.41

为第 2 圈未加入在线校正时，延迟补偿前后，第 i 时刻对第 1i + 时刻的单步预测偏差。 

 

(a) 车速预测偏差 

 

(b) 横摆角速度预测偏差 

 

(c) 质心侧偏角预测偏差 

图 5.41 第 2 圈延迟补偿前后模型预测结果 
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本研究利用高斯过程回归对延迟补偿过程与扩展采样安全集模块中使用的非线

性动力学模型进行在线校正，试验中采集第 i 采样时刻延迟补偿过程中模型对第 1i +

时刻的 v , r ,  预测量，与第 1i + 采样时刻的真实 v , r ,  状态量对比，由于第 1 圈中

数据库数据量未达到限定值时不提供在线校正服务，展示第 2, 30 圈结果如图 5.42, 图

5.43，表 5.7 所示。 

 

(a) 车速预测偏差 

 

(b) 横摆角速度预测偏差 

 

(c) 质心侧偏角预测偏差 

图 5.42 第 2 圈延迟补偿过程中在线模型校正结果 
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(a) 车速预测偏差 

 

(b) 横摆角速度预测偏差 

 

(c) 质心侧偏角预测偏差 

图 5.43 第 30 圈延迟补偿过程中在线模型校正结果 

表 5.7 高斯过程回归校正前后对比 

圈数 数据名称 单位 校正前均方根 校正后均方根 

第 2 圈 

车速预测偏差 m s  0.0015 0.0012 

横摆角速度预测偏差 rad s  0.0130 0.0065 

质心侧偏角预测偏差 rad  0.0020 0.00028369 

第 30 圈 

车速预测偏差 m s  0.0041 0.0039 

横摆角速度预测偏差 rad s  0.0215 0.0091 

质心侧偏角预测偏差 rad  0.0021 0.00056084 

与图 5.33 对比，第 2 章离线辨识的高精度非线性动力学模型对下一时刻状态量

的预测偏差远小于 LearningMPC 中的线性定常动力学模型的预测偏差。第 2 圈车速

状态的高斯过程回归无法拟合车速偏差的高频变化，但可以校正偏差均值回到 0附近，

校正后车速预测偏差降低 22.30%。高斯过程校正对横摆角速度与质心侧偏角预测偏
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差的校正效果更明显，如图 5.42(b), (c)，小曲率弯道时的横向状态的预测偏差较大，

而高斯过程回归补偿了预测偏差，横摆角速度校正后降低 49.74%，质心侧偏角校正

后降低 86.09%。 

随着圈数提升，车速不断提升，第 30 圈车辆状态相比第 2 圈有较大变化，但由

于高斯过程的数据库不断更新，高斯过程回归校正对第 30 圈的预测偏差依旧有效。

图 5.43(a)中第 30 圈的校正前车速预测偏差出现脉冲异常值，这是由于状态采集存在

丢帧或连续两帧状态相同的情况，本研究设计的高斯过程回归校正模块无法对这种

异常值进行预测补偿。第 30 圈的车速预测偏差在校正后降低 4.45%，横摆角速度预

测偏差校正后降低 57.55%，质心侧偏角预测偏差校正后降低 73.17%。 

从原理分析，信号延迟模块与在线模型校正模块间存在耦合关系，信号延迟辨

识越准确，高斯过程回归特征值中的控制量越接近实际，在线校正的预测效果越好。 

5.4 本章小结 

本章通过搭建 CarSim-dSPACE-ROS 硬件在环仿真平台，完成如下试验验证工作： 

（1）在赛道工况与双移线工况中验证第 3 章设计的基于线性时变模型预测控制

的运动控制器中各模块的有效性，证明所设计算法在非线性工况下比 TMPC 的跟踪

精度与横摆稳定性更优，且保证程序运行的实时性。 

（2）以赛道工况为例，对比有无LMS状态估计器的运动控制算法效果，证明设

计的 LMS 状态估计器的有效性。 

（3）在赛道中完成 30 圈跑动，对比本研究改进的 I-LearningMPC 与宾夕法尼亚

大学的 xLab 实验室的 LearningMPC ，改进后的 I-LearningMPC 能规划控制车辆在 30

圈内完成更优轨迹，所设计的采样安全集扩展模块，信号延迟补偿模块，高斯过程

回归在线校正模块具有良好的效果。 
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结论 

全文研究内容总结 

本文以基于数据驱动的无人赛车轨迹规划与运动控制为研究内容，以赛车迭代

跑圈为研究工况，以实时规划控制，在保证安全性前提下提高圈速为目标，设计基

于线性时变模型预测控制的赛车运动控制器与基于采样安全集的赛车规划控制器，

针对规划控制的现存问题提出解决方案，实现暖胎圈循迹及迭代过程中的圈速提升，

第 30 圈相比第 1 圈的圈时缩短 28.07%。本文从利用数据离线辨识模型，利用数据构

建终端约束与终端目标函数，利用数据构建高斯过程在线校正模型三个方面结合数

据与模型预测方法，首先对无人驾驶车辆进行建模，建立了车辆运动学、动力学模

型，并利用驾驶员在环数据采集系统采集的数据辨识模型参数；其次对模型进行线

性化，并设计一种基于线性时变模型预测控制的高频运动控制器，用于暖胎圈循迹

及采样安全集扩展；随后设计基于采样安全集的模型预测规划控制器，利用数据构

建终端约束与终端函数，并利用高精度非线性动力学模型增大采样安全集形成的终

端约束空间，设计信号延迟补偿模块与基于高斯过程回归的在线模型校正模块，利

用历史数据构建的高斯过程模型，在线校正信号延迟补偿模块与采样安全集扩展模

块中使用的非线性动力学模型。最后，设计硬件在环仿真，证明提出的运动控制器

与运动规划控制器的有效性与高性能。本文具体工作内容如下： 

（1）整车模型的建立与离线模型参数辨识 

针对车辆的强非线性和横纵向耦合特性，首先建立车辆运动学模型和三自由度

动力学模型；同时通过分析轴荷转移与轮胎力学特性引入考虑前后轴荷转移与轮胎

非线性的魔术公式。针对车辆模型关键参数的获取时间与人力成本高的问题，利用

驾驶员驾驶数据辨识离线模型参数，首先采用最小二乘法辨识模型中的空气阻力与

摩擦阻力，然后采用贝叶斯优化辨识动力学模型中的关键参数并进行测试集验证。 

（2）基于线性时变模型预测控制的运动控制器设计 

围绕高速无人驾驶车辆实时高精度的运动控制需求，设计应用于赛车暖胎圈循

迹与采样安全集扩展的双层架构运动控制系统，上层首先设计路径点筛选器，根据

重要程度筛选高密度路径点集，提高程序中预处理速度；其次设计速度规划器，根

据曲率计算车速上限，避免大曲率弯道车速过高；下层设计基于模型预测控制的横

向路径跟踪控制器，对非线性动力学模型进行局部线性化，以提高优化问题求解速
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度，实现横向路径跟踪功能；设计增量式 PID 纵向控制器，对上层速度规划器规划

的目标速度实现了考虑轮胎特性的跟踪；最后设计 LMS 状态估计器提升控制器的抗

噪性能，为后续研究应用于实车做准备。 

（3）基于采样安全集的规划控制器设计 

针对赛车迭代的规划控制问题，提出无参考线的实时一体式规划控制架构 I-

LearningMPC。设计赛车迭代的模型预测规划控制优化问题，利用历史数据形成采样

安全集，构建终端约束与终端函数；针对数据集规模与终端约束空间的矛盾，设计

安全集扩展模块，利用运动控制系统控制作为虚拟车辆的高精度非线性模型，以历

史圈的车速跟踪赛道中心线，增大终端约束范围；针对车辆延迟问题，对控制时延

来源进行分析，设计离线辨识在线修正的方法辨识时延，并设计高精度非线性模型

递推状态的延迟补偿方法，减少控制时延的影响；针对模型失配问题，设计在线模

型校正模块，利用高斯过程回归对采样安全集扩展模块与延迟补偿模块中应用的非

线性动力学模型进行预测偏差在线校正，提高了预测精度。设计多线程模式减少高

斯过程数据库更新对整体算法实时性的影响。 

（4）硬件在环仿真试验验证 

为验证本文提出的运动控制系统及赛车迭代规划控制架构 I-LearningMPC，搭建

CarSim-dSPACE-ROS 硬件在环仿真平台，首先设计赛道工况，以验证运动控制系统

在暖胎圈的循迹表现，路径点筛选器将路径点筛选至 293个，纵向控制器控制车辆从

0 起步，加速至目标车速，与基于线性定常模型的传统运动控制器进行对比试验，结

果表明在轮胎线性区内，两种控制系统跟踪精度均能满足要求。其次设计双移线工

况以评价运动控制器在轮胎非线性区行驶时的表现，与传统运动控制器对比横向偏

差均方根值减少 19.91%，横摆角偏差均方根值减少 88.93%，并提高了车辆的横摆稳

定性。单次运行时间统计表明，两种工况下两种控制器单次程序运行时间均小于

10ms，并进行了 100Hz 高频控制试验。附加传感器噪声试验验证了 LMS 状态估计器

的滤波效果。车辆以 36km/h 初速度在赛道工况中进行 30 圈迭代跑动，对比 I-

LearningMPC 与 xLab 实验室开发的 LearningMPC 规划控制器， I-LearningMPC 第 30

圈的圈时相比第 1 圈缩短 28.07%，比 LearningMPC 快 3.925s，规划控制的轨迹更平

顺、稳定。高精度模型、采样安全集扩展与延迟补偿模块避免了 LearningMPC 中出

现的在道路内侧大幅度横摆的现象。I-LearningMPC 单次程序运行时间更长，但仍满

足 20Hz 实时规划控制。延迟补偿后的控制量预测值绝大部分时刻与车辆实际控制量
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间相同，模型在线校正模块大大降低非线性模型的预测偏差。 

本文研究内容具体可扩展应用于量产车的下列场景： 

（1）同系列车的快速路测与车辆载货或磨损后的模型校正，只需辨识一组动力

学模型参数，其余车辆以该组参数为基础在线校正。 

（2）重复的固定道路内（园区，物流，矿山）的实时轨迹规划与控制。 

（3）规划控制过程中通信延迟的在线辨识与补偿。 

论文创新点 

（1）面向高速自动驾驶车辆实时高精度的运动控制需求，提出上层为基于路径

点价值评价的路径点筛选器与基于轮胎力分析的速度规划器，下层为基于线性时变

动力学模型预测的路径跟踪控制器与速度控制器的双层方案，可实现 100Hz 控制。 

（2）采用基于数据学习的无参考线规划控制，并针对数据集存储与学习效果的

矛盾，提出安全集扩展方法。利用运动控制系统控制虚拟车辆，以历史圈车速跟踪

赛道中心线，采样状态补充真实车辆历史数据，增大了多圈迭代后的终端凸安全集。 

（3）针对模型在线校正时出现的数据库更新耗时较长的问题，提出双线程逻辑，

复制更新后的数据库用于对外校正服务，避免数据库更新影响整体规划控制实时性。

并围绕延迟问题，提出离线、在线相结合的时延辨识方法，及利用高精度非线性动

力学模型递推状态，作为优化问题初始值的延迟补偿方法，减少了控制时延的影响。 

未来工作展望 

本文虽然在基于数据驱动的无人驾驶赛车轨迹规划与运动控制方面取得了一些

进展，但仍然由一些工作需要进一步深入研究，主要包括： 

（1）本文考虑实时性因素，提出的运动控制器与规划控制器均对模型进行了局

部线性化，降低了预测精度，提高了线性化参考点的要求，未来随着非线性求解器

的发展，可以直接构建非线性优化问题，并在线校正优化问题中的预测模型。 

（2）本文提出的规划控制器仅追求圈速提升，未要求入弯减速出弯加速等赛车

驾驶习惯，在后续工作中，应设计目标函数使规划控制的轨迹更符合赛车驾驶习惯。 

（3）赛车行驶时，当遇到紧急情况时需要避让，本文提出的规划控制器虽然是

20Hz 的实时规划与控制，但未考虑避障约束，在后续工作中可进行相关研究。 
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