
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

Optimal Path Following Simulation of
Autonomous Vehicles with Real-time
Nonlinear Model Predictive Control

Jun-Ting Li1 , Chih-Keng Chen1∗ and Hongbin Ren2

Abstract—We designed a controller framework for autonomous
racing vehicles that simultaneously coordinates the longitudinal
and lateral vehicle dynamics. The system enables a vehicle to
follow an curvy reference path at high speed while maintaining
stability. First, the Cartesian coordinates of the reference path
are transformed to curvilinear coordinates, and the decoupled
vehicle heading and lateral error dynamics are established.
The nonlinear tire characteristics are then used to construct
a third-order vehicle dynamics model that accurately predicts
the state of the vehicle. Finally, a ninth-order nonlinear model
predictive controller (NMPC) model is developed by combining
path tracking dynamics, vehicle dynamics, and actuator slew
rates. To formulate the path-following task as an optimization
problem, we developed a cost function comprising path tracking
errors, control efforts, and constraints, such as the actuator
bounds and tire grip limits. The acados solver could solve the
NMPC problem in milliseconds. The optimal steering angle and
the longitudinal acceleration command were obtained from the
NMPC solution, and a lower speed controller implemented the
acceleration command as either a rear-wheel driving torque
or four-wheel braking torque. The CarSim simulation results
revealed that the vehicle can follow a highly dynamic path at
an average speed of 85 km/h while maintaining a small tracking
error.

Index Terms—Path Following, Nonlinear Model Predictive
Controller (NMPC), Embedded Optimization Solver

I. INTRODUCTION

Autonomous driving has become a popular research topic
in recent years. It has the potential to revolutionize the way
humans travel and greatly improve road safety by eliminating
human error as a cause of accidents [1]. Advances in artificial
intelligence, machine learning, and sensor technology [2] are
also driving the development of autonomous driving technol-
ogy. As these technologies continue to improve, developing
fully autonomous vehicles that are capable of navigating roads
safely and efficiently is becoming increasingly feasible. A core
task in autonomous driving is path following, which is the
ability of an autonomous vehicle to accurately track a planned
path that is typically defined by a set of waypoints or trajectory
points. A high-performance path-following controller enables
an autonomous vehicle to operate safely and efficiently in
complex and dynamic environments, such as those in obstacle
avoidance and high-speed racing tasks.

1Department of Vehicle Engineering, National Taipei University of Tech-
nology, Taipei 10608, Taiwan.

2School of Mechanical Engineering, Beijing Institute of Technology, Bei-
jing 100081, China (e-mail: renhongbin2106@126.com).

∗Correspondence: ckchen@ntut.edu.tw
Digital Object Identifier (DOI): see top of this page.

Driving a vehicle at high speeds while accurately following
a curvy road is a challenging task for autonomous systems.
Several studies have investigated this problem. Hoffmann
et al. [3] used the Stanley method, which is based on path
geometry, and a vehicle kinematic model to control vehicle
steering. They expected that lateral error could be reduced
by eliminating the heading angle error; this method was
highly successful in the Defense DARPA Grand Challenge.
Later, curvilinear coordinates were introduced to decouple the
heading angle error and lateral error to formulate a state-space
model. Snider et al. [4] simulated this model by using LQ
feedback combined with feedforward control, achieving a very
small tracking error. Kapania et al. [5] designed a controller
with a nonlinear tire feedforward term and state feedback
loop and verified the controller in a real vehicle that precisely
followed the reference path near its handling limits. Srinivasan
et al. [6] proposed a holistic motion planning and controller
framework that used NMPC to guide all vehicle motion; the
method outperformed a professional racecar driver in a racing
experiment.

Embedded optimization [7] plays a critical role in vehicle
controllers because the vehicle’s control system most process
data on vehicle motion, road conditions, traffic, and other
factors in real-time to optimize its route and driving behavior.
The controller must also be able to provide real-time results
when deployed in embedded devices. Several studies have used
different controller frameworks to implement NMPC, such as
C/GMRES [8], GRAMPC [9], IPOPT [10] and FORCEPRO
[11]. All of these solvers have user-frendly Python or MAT-
LAB interfaces for formulating NMPC problems and auto-
matically generating the corresponding C code. To minimize
the time required for a solution, a state-of-the-art embedded
solver acados [12] is used in this article. In one study where
acados was applied to the ignition engine control problem
[13], the authors demonstrated that it completes computations
faster than commercial solvers.

This article 1) creates a parametric representation of the ref-
erence path and a calculation method of the following error for
discrete waypoints, 2) formulates a constrained optimization
problem and present a normalized method for the cost function
to enable solving the problem efficiently and rapidly, 3) uses
state-of-the-art acados software to solve the NMPC problem
and achieve a computation time in the millisecond range, and
4) validates the controller’s performance in a high-speed racing
scenario where it provided successful path tracking. Our goal
is to provide a design workflow for a path-following controller

https://orcid.org/0000-0002-1594-1933
https://orcid.org/0000-0001-9117-7116
https://orcid.org/0000-0002-4903-0935

2 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

Vx

Vy V

β

OB

αr

Fxr

Fyr

Vr

Fyf

αf

Fxf

ψ̇ Vf

δ

lr lf

l

OB

x

y

z

Fig. 1. Diagram of the single-track vehicle model. Red, state variables;
blue, tire forces; arrows indicates the positive direction of the corresponding
variable.

and eliminate doubts regarding the feasibility of implementing
real-time NMPC. The open source sample code for the path-
following problem is provided for other researchers and prac-
titioners to easily reproduce this research, set up simulation
environments, and explore additional applications of NMPC.

II. VEHICLE MODELING

Numerous vehicle models can be selected for the path-
following problem [14]. To achieve vehicle control near the
handling limits, a vehicle model must capture the dynamic
coupling of longitudinal and lateral motion as well as the
nonlinearity of tire forces and relevant trigonometric functions.

Solving the path-following problem mainly requires charac-
terizing the planar motion of vehicle; hence, vertical motion
such as suspension dynamics can be neglected. To balance
model fidelity and computational cost, the three degrees of
freedom (3DOF) single-track vehicle model was selected for
vehicle modeling.

A. Nonlinar Single-Track Vehicle Model

The layout of the single-track model is shown in Fig. 1.
The vehicle body coordinate OB is located at the vehicle’s
center of gravity (CG) position, and the sum of the moment
and forces about OB are as follows:∑

Mz = lf [Fyf cos (δ) + Fxf sin (δ)]− lrFyr (1a)∑
Fx = −Fyf sin (δ) + Fxf cos (δ) + Fxr − Fd (1b)∑
Fy = Fyf cos (δ) + Fxf sin (δ) + Fyr, (1c)

where δ is the front wheel steer angle; l is the wheelbase;
lf and lr are the distance from the CG to the front and rear
axles, respectively. For the lumped tire force Fij , the subscript
i = {x, y} denote the longitudinal or lateral direction and the
subscript j = {f, r} denote the front or rear wheel. The drag
force Fd = CdV

2
x is the multiplicative product of the compact

aerodynamic coefficient and the square of the velocity.

𝐹𝑧 = 1300N

𝐹𝑧 = 2700N

𝐹𝑧 = 5400N

𝐹𝑧 = 6700N

𝐹𝑧 = 8100N

𝐹𝑧 = 4000N

Fig. 2. Simplified Magic Formula tire model.

To predict the planar vehicle motion about OB , we use the
angular velocity ψ̇ (yaw rate), longitudinal velocity Vx, and
lateral velocity Vy to formulate dynamic equations:

ψ̈ =

∑
Mz

Iz
(2a)

V̇x =

∑
Fx
m

+ Vyψ̇ = ax + Vyψ̇ (2b)

V̇y =

∑
Fy
m

− Vxψ̇ = ay − Vxψ̇, (2c)

where m is the mass of the vehicle, Iz is the moment of inertia,
and ax and ay are the measurable accelerations on OB .

B. Lateral Tire Force

The load transfer affects on the characteristics of the lateral
tire force and must therefore be included to ensure the accu-
racy of the model (Fig. 2). For consistency with the single-
track model, only longitudinal load transfer was considered.
An algebraic loop occurs if the load transfer is calculated
from ax because ax depends on the lateral tire force in (1b),
which in turn depends on the load transfer. Instead, we use the
steady-state approach by noting that ax = −Vyψ̇ from (2b) to
calculate the load transfer,

Fzf = m
(
glr + Vyψ̇hc

)
/l (3a)

Fzr = m
(
glf − Vyψ̇hc

)
/l, (3b)

where hc is the height of the CG and g is the gravity constant.
The Simplified Magic Formula [15] with a few parameters

is used to capture the nonlinear behavior of lateral tire force.
The model is a function of the sideslip angle α, the vertical
force Fz of a single wheel, and the road friction coefficient µ
as follows:

Fy0 (α, Fz, µ) = µD sin
[
C tan−1 (Bα)

]
(4a)

D = d1Fz + d2, (4b)

where B, C, and D are fitting coefficients. The peak factor
D is defined by the first-order function of Fz because it is
mainly affected by the vertical tire force and varies linearly

SRINIVASAN et al.: A HOLISTIC MOTION PLANNING AND CONTROL SOLUTION TO CHALLENGE A PROFESSIONAL RACECAR DRIVER 3

with it. The lumped sideslip angles at the front and rear axles
are described as follows:

αf = tan−1

[
Vy + lf ψ̇

Vx

]
− δ (5a)

αr = tan−1

[
Vy − lrψ̇

Vx

]
. (5b)

The combined tire lateral forces Fyf and Fyr in (6) can then
be substituted into the single-track model (1).

Fyi = 2Fy0

(
αi,

Fzi
2
, µ

)
, i ∈ {f, r} . (6)

C. Longitudinal Tire Force

The longitudinal forces Fxf and Fxr comprise the rear-
wheel traction force Ft and the all-wheel braking force Fb
as in the following equations:

Fxf = kbFb (7a)
Fxr = Ft + (1− kb)Fb, (7b)

where kb is the braking coefficient, which determines the force
distribution between the front axle and rear axle. We set kb =
Fzf/(mg) to distribute the braking force in accordance with
the axle load ratio.

The inputs of the described system are δ, Ft, and Fb. These
variables may have large differences in magnitude, which may
casue numerical instability for an NMPC solver. Therefore, the
normalized acceleration at and ab are used in the model:

at = Ft/m, ab = Fb/m. (8)

This transformation enables setting the scaling factors and
bounds for the optimizer in a more intuitive manner.

After the optimal acceleration commands have been deter-
mined by NMPC, a lower controller solves for the desired
longitudinal tire forces. The traction and braking torques are
distributed proportionally to the relative vertical forces of each
wheel as follows:

Tt,rl =
F+
xr

2

(
1− ∆Fzr

Fzr

)
, Tt,rr =

F+
xr

2

(
1 +

∆Fzr
Fzr

)
,

(9a)

Tb,fl =
F−
xf

2

(
1− ∆Fzf

Fzf

)
, Tb,fr =

F−
xf

2

(
1 +

∆Fzf
Fzf

)
,

(9b)

Tb,rl =
F−
xr

2

(
1− ∆Fzr

Fzr

)
, Tb,rr =

F−
xr

2

(
1 +

∆Fzr
Fzr

)
.

(9c)

where the superscripts of + and − denote the positive or
negative parts, respectively, of the longitudinal forces. The
relative vertical loads are as follows:

∆Fzf = 2m(
lr
l
g − hc

l
ax)

hc
Eg

ay (10a)

∆Fzr = 2m(
lf
l
g +

hc
l
ax)

hc
Eg

ay. (10b)

D. Constraints

During racing, we must ensure that the combined tire force
is contained within the friction ellipse to avoid large tire slips
and loss of grip. Thus, the following quadratic constraints are
applied:

F 2
xi + F 2

yi

(µFzi)
2 ≤ 1, i ∈ {f, r} . (11)

The system inputs also have upper bounds and lower bounds
due to physical limitations. These bounds are expressed by the
following inequality constraints:

δmin ≤ δ ≤ δmax (12a)

0 ≤ at ≤
Tr,max

rwm
(12b)

Tb,max

rwm
≤ ab ≤ 0, (12c)

where Tr,max is the maximum total traction torque of the rear
axle, Tb,max is the maximum braking torque of each axle, and
rw is the effective rolling radius of the wheel.

To achieve optimal actuation efficiency, an equality con-
straint is imposed as follows:

atab = 0 (13)

This equation ensures that the traction and braking commands
are orthogonal (i.e., they are not active at the same time).

III. PATH MODELING

In this section, the reference path is fitted by a cubic spline
function to create a parametric representation. A curvilinear
coordinate system is used to describe the relationship between
the vehicle position and the reference waypoints. An algorithm
is presented to accurately evaluate the path-tracking error for
a discrete path.

A. Parametric Path

The discrete path data set [X,Y] comprises the path coor-
dinates X = [x0, . . . , xn]

⊤ and Y = [y0, . . . , yn]
⊤. A spline

function X (s) with n equations is used to fit X as follows:

X (s) = ak(s− sk−1)
3 + bk(s− sk−1)

2 + ck(s− sk−1)

k = 1, . . . , n, s ∈ [sk−1, sk] , (14)

where s is the cumulative arc length starting from s0 = 0 as
follows:

sk =

k∑
i=1

√
(xi − xi−1)

2
+ (yi − yi−1)

2
, k = 1, . . . , n.

(15)
A higher-order derivative of the spline function with respect
to the progressive variable s is easily obtained as

X ′(s) = 3ak(s− sk−1)
2 + 2bk(s− sk−1) + ck (16)

X ′′(s) = 6ak(s− sk−1) + 2bk (17)
k = 1, . . . , n, s ∈ [sk−1, sk] .

Per this procedure, Y(s), Y ′(s), and Y ′′(s) can also be derived
from Y.

4 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

ey

ex
ψr

ψm(s)

Path Spline

pm

pc ψ

eψ

O x

y

OB

VxVy

e

R = 1
κr(s)

Waypoint

Fig. 3. Single-track vehicle model in curvilinear coordinates.

The reference heading angle ψr and the reference curvature
κr are calculated as

ψr = arctan 2 (Y ′,X ′) (18)

κr =
X ′Y ′′ −X ′′Y ′[

(X ′)
2
+ (Y ′)

2
]3/2 , (19)

where arctan 2 is the two-argument arctangent function.

B. Tracking Error for a Discrete Path

An overview of path-following model is displayed in Fig. 3.
We wish to calculate the exact path-tracking error from the
vehicle position p to its projection point on the reference
path; however, only information on waypoints is available.
Increasing the waypoint density could facilitate this calculation
but would also increase the workload of algorithm. Instead, we
use a similar approach to that of [16] to calculate the projection
point.

The vehicle CG position is pc = [xc, yc]
⊤, and the

closest waypoint to pc is defined as the ”matching point,”
pm = [xm, ym]

⊤, where m is the index of the matching point.
The tracking error vector in global coordinates is defined as
follows:

e = pc − pm. (20)

To obtain the longitudinal error ex and the lateral error ey ,
the error vector is projected onto curvilinear coordinates by a
rotation matrix:[

ex
ey

]
= R⊤ (ψr) e

R (ψm) =

[
cos (ψm) − sin (ψm)
sin (ψm) cos (ψm)

]
,

(21)

where ψm is the reference heading angle at pm. In general,
the arc length error es can be approximated as the longitudinal
error ex. If the reference curvature of the matching point
and projection point are assumed to be the same, a trick for

Fig. 4. Control architecture for NMPC path-following.

compensating for the reference heading angle can be applied
as recommended in [17]:

ψr = ψm + κres. (22)

If the vehicle sideslip angle β is required to be small during
racing, the course angle can be approximated as the heading
angle. The heading error is then

eψ = ψ − ψr. (23)

C. Tracking Error Dynamics

To predict the future path-tracking error, the dynamics of
the heading error and lateral error are expressed as follows:

ėψ = ψ̇ − ψ̇r = ψ̇ − κr ṡ, (24a)
ėy = Vy cos (eψ) + Vx sin (eψ) (24b)

ṡ =
Vx cos (eψ)− Vy sin (eψ)

1− κrey
, (24c)

where ṡ is the instantaneous tangential velocity at the projec-
tion point.

IV. NONLINEAR MODEL PREDICTIVE CONTROLLER

In this section, the path following problem is transformed
to a nonlinear programming (NLP) problem. To improve the
efficiency and optimize the solution, we further explore the
formulation of the NMPC, implementation details, and suitable
parameters.

A. Control Architecture

The overall control structure for the path-following problem
is presented in Fig. 4, where i ∈ {f, r} and j ∈ {r, l}. The
posture evaluation module outputs the path tracking errors eψ
and ed in accordance with the current position of the vehicle.
The preview module looks forward over the preview path
and sends the corresponding reference curvature and reference
speed to the NMPC. The lower controller distributes the
desired longitudinal forces command F ∗

xi as the rear driving
torque or four-wheel braking torque.

SRINIVASAN et al.: A HOLISTIC MOTION PLANNING AND CONTROL SOLUTION TO CHALLENGE A PROFESSIONAL RACECAR DRIVER 5

B. Prediction Model

With vehicle dynamics (2) and path-following dynamics
(24) considered, the prediction model is formulated as

ẋ =



ψ̈

V̇x

V̇y

ėψ

ėy

ṡ

δ̇
ȧt
ȧb



=



∑
Mz

Iz∑
Fx
m

+ Vyψ̇∑
Fy
m

− Vxψ̇

ψ̇ − κr ṡ

Vy cos (eψ) + Vx sin (eψ)

Vx cos (eψ)− Vy sin (eψ)

1− κrey
∆δ
∆at
∆ab



:= f (x,u,p) .

(25)
Given a prediction horizon Np, p =

[
κ1r, . . . , κ

Np
r

]
is the

parameterized trajectory composed by the reference curvature
at each prediction stage. The first six equations in (25) predict
future vehicle states, path tracking errors, and driving distance.
In the last three equations, we assign the slew rate of system
inputs as extended states in a similar manner to [6] and
[18]. This approach reduces drastic input changes, ensuring
smooth command signals. Then, the manipulated variables of
the NMPC are

u =
[
∆δ ∆at ∆ab

]⊤
. (26)

C. Discretization

A processor can only perform discrete operations; therefore,
the model must be discretized. Variable-step methods, such
as fourth-order Runge-Kutta, may introduce noise into the
numerical calculations. Instead, the multistep Euler method
was used to discretize the model in a simple but precise
manner: 

k1 = f (xk,uk,p)

k2 = f (xk + hk1,uk,p)
...
kn = f (xk + hkn−1,uk,p)

(27)

xk+1 = xk + h

n∑
i=1

f (xk) (28)

:= fd (xk,uk,p) , k = 0, . . . , Np − 1, (29)

where ts is the NMPC sample time or, equivalently, the time
interval for solving each optimization problem in (33). h =
ts/n is the step size of Euler method. Smaller steps can be
used to increase the model prediction accuracy. In this study,
ts = 0.1 s and h = 0.025 s.

D. Reference Outputs

The outputs of NMPC are y = [Vy, Vx, ey], and the
reference output trajectory is given in each stage of the
prediction horizon N ,

Vref
y = 01×Np (30a)

Vref
x =

[
V ref
x (spv

1), . . . , V ref
x (spv

Np
)
]

(30b)

eref
y = 01×Np . (30c)

The reference lateral speed is set to the zero vector to improve
lateral stability, and Vref

x is the preview reference speed over
the prediction distance. For the path tracking error, heading
error must be regulated. Lateral error must also be regulated
because the lateral error dynamics (24b) are driven by lateral
error.

E. Cost Function

Through the composition of the tracking and control costs
over the prediction horizon, the cost function J to be mini-
mized is defined as follows:

J =

Np∑
k=1

1

2

∥∥S−1
y

(
yk − yref

k

)∥∥2
Q
+

Np−1∑
k=0

1

2

∥∥S−1
u uk

∥∥2
R
, (31)

where Sy, and Su are square matrices with diagonal scaling
factors. These factors exist to normalize each variable; a simple
method of selecting these factors is in terms of the maximum
acceptable deviation from the nominal value. Q is a positive
weighting matrix to penalize the difference between reference
states and actual system states, R similarly penalizes control
actions to ensure a smooth input trajectory. Their values in the
method as implemented are as follows:

Sy = diag [2, 30, 0.3] (32a)

Su = diag
[
20

π

180
, 20, 20

]
(32b)

Q = diag [0.1, 10, 5] (32c)
R = diag [5, 0.5, 0.5] . (32d)

Finally, we collect cost function, prediction model, and con-
straints to formulate the path-following optimization problem:

min
x0,...,xNp

u0,...,uNp−1

J (33a)

s.t. x0 = x̂(t) (33b)
xk+1 = fd (xk,uk,p) (33c)
constraints (11), (12), (13), (33d)

where x̂(t) is the estimated or measured state at the current
time. The problem (33) was solved using the software package
acados, which can generate C code for an embedded NMPC
for real-time applications. The HPIPM was selected as the
sequential QP (SQP) solver. All programs were run on a
desktop computer and given access to a single thread of an
Intel Core i5-12500 processor. In each step, the problem can
be solved within milliseconds.

6 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

V. NUMERICAL RESULTS

The commercial software CarSim is widely used to simulate
complete vehicle dynamics. Its cosimulation interface with
simulink enables easily implementing a closed-loop racing
scenario to validate the NMPC performance.

A. Reference Path and Velocity Profile

The optimal reference raceline was generated by the min-
imum curvature algorithm, and the corresponding reference
speed was generated by the quasi-steady-state lap time sim-
ulation tool. All of these programs are open source and
available in [19]. The reference curvature and heading angle
of the raceline were obtained by following the process in
Section III-A.

B. Vehicle Configuration

The B-class sports car included in CarSim was used as the
test vehicle in this study; this vehicle is a neutral-steering
vehicle. The vehicle parameters are listed in Table I.

TABLE I
VEHICLE PARAMETERS.

m 1209 [kg]
Iz 1020 [kg-m2]

lf , lr, hc 1.165, 1.165, 0.35 [m]

C. Path Tracking Performance

Fig. 5 presents the overall path tracking response. The
vehicle accelerated from the starting point and drove safely
through the U-turn in Section 1⃝. Section 2⃝ was a sharp
corner that required a large yaw rate. In Section 3⃝, the
vehicle entered the L-turn at nearly 100 km/h. Its speed was
maintained at over 100 km/h while accelerating through the
straight line in Section 4⃝. Finally, the vehicle smoothly drove
through another U-turn in Section 5⃝. The average speed of
the vehicle was 85.23 km/h, and the lap time was 94.18 s.

Fig. 6 reveals that the lateral error in the all path sections
was less than 0.1 m, and the heading error was below 4◦;
hence, the vehicle accurately followed the curved reference
path.

The recorded vehicle state variables are presented in Fig. 7.
The vehicle properly decelerated before turns and accelerated
during straight paths. During the turn, the yaw rate was
used to track the curvature profile while lateral stability was
maintained by suppressing the sideslip angle to be below 2◦.
The speed profile shows that the vehicle tracked the reference
speed at various curvatures.

Fig. 8 reveals that the NMPC output an appropriate steering
angle at both low and high speeds to precisely control the
lateral dynamics of the vehicle. Virtual acceleration commands
controlled the vehicle to follow the reference speed profile and
also met the orthogonal constraint.

Fig. 9 presents the traction and braking torque of the four
wheels. The controller adjusted the torque command in accor-
dance with the load transfer on each wheel. The smoothness

-150 -100 -50 0 50 100 150 200

X [m]

-200

-150

-100

-50

0

50

100

150

200

250

300

Y
 [m

]

Starting Point

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

V
 [k

m
/h

]

Track boundary
Race line

1

2

4

5

3

Fig. 5. Path-tracking results in Cartesian coordinates

Fig. 6. Path tracking error response

of the signal helped the lower controller implement these
commands.

Fig. 10 is the g-g-v diagram presenting the vehicle accel-
erations and velocity. The maximum lateral and longitudinal
accelerations were both approximately 0.8 g; hence, the tire
grip limit was almost reached, but a safety margin was
preserved. The tire force did not exceed the limit of the tire
ellipse during racing.

Adding preview information greatly improves the overall
system damping of high-frequency oscillations at high speeds.
The NMPC performed well in this study at 10 Hz.

D. Execution Performance

Fig. 11 presents the computation time of the NMPC solver;
the mean and maximum solving times were 0.0018 and 0.0052

SRINIVASAN et al.: A HOLISTIC MOTION PLANNING AND CONTROL SOLUTION TO CHALLENGE A PROFESSIONAL RACECAR DRIVER 7

Fig. 7. Vehicle state response

Fig. 8. Optimal NMPC commands

Fig. 9. Torque distribution of the low-level controller

s, respectively. The computation time was proportional to
the number of SQP iterations, and the number of iterations
increased when the vehicle entered a nonlinear region during
high-speed cornering. However, the computation time was
acceptable overall. This solver has great potential for real-time
applications on embedded hardware.

Fig. 10. g-g-v diagram for data recorded every 0.1 s

Fig. 11. Execution time and SQP iterations of the NMPC solver

VI. CONCLUSIONS

The proposed controller scheme coordinates the vehicle’s
lateral and longitudinal dynamics to follow the racing path at
high speed. By combining path dynamics and vehicle dynam-
ics to build a prediction model for NMPC, excellent path-
following performance and driving stability were achieved.
The CarSim simulation results demonstrates that the vehicle
can follow a highly dynamic path at an average speed of 85
km/h while maintaining a small tracking error. The NMPC
implemented by acados also can solve the path-following
problem in real-time at a reasonable computational load.

In the future, we could further study vehicle dynamics and
control under extreme handling situations, such as high-speed
obstacle avoidance or drift control. However, further investi-
gations of nonlinear systems are also required to determine
the uncertainty of the tire model and road conditions.

ACKNOWLEDGMENTS

The project is supported by the NTUT-BIT Joint Research
Program under Grant No. NTUT-BIT-111-02 and the Taiwan
National Science and Technology Council under Grant No.
NSTC 111-2221-E-027-088.

8 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

REFERENCES

[1] A. S. Mueller, J. B. Cicchino, and D. S. Zuby, “What humanlike errors
do autonomous vehicles need to avoid to maximize safety?” Journal of
safety research, vol. 75, pp. 310–318, 2020.

[2] J. Kocić, N. Jovičić, and V. Drndarević, “Sensors and sensor fusion
in autonomous vehicles,” in 2018 26th Telecommunications Forum
(TELFOR), 2018, pp. 420–425.

[3] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Au-
tonomous automobile trajectory tracking for off-road driving: Controller
design, experimental validation and racing,” in 2007 American control
conference. IEEE, 2007, pp. 2296–2301.

[4] J. M. Snider et al., “Automatic steering methods for autonomous
automobile path tracking,” Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RITR-09-08, 2009.

[5] N. R. Kapania and J. C. Gerdes, “Design of a feedback-feedforward
steering controller for accurate path tracking and stability at the limits
of handling,” Vehicle System Dynamics, vol. 53, no. 12, pp. 1687–1704,
2015.

[6] S. Srinivasan, S. N. Giles, and A. Liniger, “A holistic motion planning
and control solution to challenge a professional racecar driver,” IEEE
Robotics and Automation Letters, vol. 6, no. 4, pp. 7854–7860, 2021.

[7] H. Ferreau, S. Almér, R. Verschueren, M. Diehl, D. Frick,
A. Domahidi, J. Jerez, G. Stathopoulos, and C. Jones, “Embedded
optimization methods for industrial automatic control**support by
the eu via erc-highwind (259 166), itn-tempo (607 957), and
itn-awesco (642 682) and by the dfg within reseach unit for 2401
is gratefully acknowledged.” IFAC-PapersOnLine, vol. 50, no. 1, pp.
13 194–13 209, 2017, 20th IFAC World Congress. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896317325764

[8] T. Fu, H. Zhou, and Z. Liu, “Nmpc-based path tracking control strategy
for autonomous vehicles with stable limit handling,” IEEE Transactions
on Vehicular Technology, vol. 71, no. 12, pp. 12 499–12 510, 2022.

[9] H. Zhou, F. Jia, H. Jing, Z. Liu, and L. Güvenç, “Coordinated longitu-
dinal and lateral motion control for four wheel independent motor-drive
electric vehicle,” IEEE transactions on Vehicular Technology, vol. 67,
no. 5, pp. 3782–3790, 2018.

[10] M. Brunner, U. Rosolia, J. Gonzales, and F. Borrelli, “Repetitive learning
model predictive control: An autonomous racing example,” in 2017 IEEE
56th annual conference on decision and control (CDC). IEEE, 2017,
pp. 2545–2550.

[11] J. Suh, H. Chae, and K. Yi, “Stochastic model-predictive control for lane
change decision of automated driving vehicles,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 6, pp. 4771–4782, 2018.

[12] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl,
“acados—a modular open-source framework for fast embedded optimal
control,” Mathematical Programming Computation, vol. 14, no. 1, pp.
147–183, 2022.

[13] A. Norouzi, S. Shahpouri, D. Gordon, A. Winkler, E. Nuss, D. Abel,
J. Andert, M. Shahbakhti, and C. R. Koch, “Deep learning based
model predictive control for compression ignition engines,” Control
Engineering Practice, vol. 127, p. 105299, 2022.

[14] P. Stano, U. Montanaro, D. Tavernini, M. Tufo, G. Fiengo, L. Novella,
and A. Sorniotti, “Model predictive path tracking control for automated
road vehicles: A review,” Annual Reviews in Control, 2022.

[15] M. Metzler, D. Tavernini, P. Gruber, and A. Sorniotti, “On prediction
model fidelity in explicit nonlinear model predictive vehicle stability
control,” IEEE transactions on control systems technology, vol. 29, no. 5,
pp. 1964–1980, 2020.

[16] Z. Wang, K. Sun, S. Ma, L. Sun, W. Gao, and Z. Dong, “Improved
linear quadratic regulator lateral path tracking approach based on a
real-time updated algorithm with fuzzy control and cosine similarity
for autonomous vehicles,” Electronics, vol. 11, no. 22, p. 3703, 2022.

[17] V. Wong, “Lecture note in automated-driving-control,” Github Repos-
itory, [Online]. Available: https://github.com/VincentWong3/automated-
driving-control.

[18] R. Lot and F. Biral, “A curvilinear abscissa approach for the lap
time optimization of racing vehicles,” IFAC Proceedings Volumes,
vol. 47, no. 3, pp. 7559–7565, 2014, 19th IFAC World Congress.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1474667016428041

[19] A. Heilmeier, “Quasi-steady-state lap time simulation,” Github
Repository, [Online]. Available: https://github.com/TUMFTM/laptime-
simulation.

https://www.sciencedirect.com/science/article/pii/S2405896317325764
https://github.com/VincentWong3/automated-driving-control/blob/main/notebook/%E8%87%AA%E5%8A%A8%E9%A9%BE%E9%A9%B6%E6%8E%A7%E5%88%B6%E7%AE%97%E6%B3%95%E7%AC%AC%E4%B8%83%E8%AE%B2.pdf
https://github.com/VincentWong3/automated-driving-control/blob/main/notebook/%E8%87%AA%E5%8A%A8%E9%A9%BE%E9%A9%B6%E6%8E%A7%E5%88%B6%E7%AE%97%E6%B3%95%E7%AC%AC%E4%B8%83%E8%AE%B2.pdf
https://www.sciencedirect.com/science/article/pii/S1474667016428041
https://www.sciencedirect.com/science/article/pii/S1474667016428041
https://github.com/TUMFTM/laptime-simulation
https://github.com/TUMFTM/laptime-simulation

	Introduction
	Vehicle Modeling
	Nonlinar Single-Track Vehicle Model
	Lateral Tire Force
	Longitudinal Tire Force
	Constraints

	Path Modeling
	Parametric Path
	Tracking Error for a Discrete Path
	Tracking Error Dynamics

	Nonlinear Model Predictive Controller
	Control Architecture
	Prediction Model
	Discretization
	Reference Outputs
	Cost Function

	Numerical Results
	Reference Path and Velocity Profile
	Vehicle Configuration
	Path Tracking Performance
	Execution Performance

	Conclusions
	References

